• Title/Summary/Keyword: $Bcl_2$

Search Result 1,636, Processing Time 0.033 seconds

Biological Control of Lettuce Sclerotinia Rot by Bacillus subtilis GG95 (길항미생물 Bacillus subtilis GG95를 이용한 상추 균핵병의 생물학적 방제)

  • Lee, Hyun-Ju;Kim, Jin-Young;Lee, Jin-Gu;Hong, Soon-Sung
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.225-230
    • /
    • 2014
  • Sclerotinia sclerotiorum, a plant pathogenic fungus, can cause serious yield and quality losses in the winter lettuce field. For biological control of S. sclerotiorum, soil-born microorganisms that inhibit the mycelia growth of S. sclerotiorum and Fusarium oxysporum were isolated from diseased soil. Among the isolates, bacterial isolate, GG95, which was identified as Bacillus subtilis according to the morphological, physiological characteristics and by 16S rRNA similarity, showed the highest level of inhibitory activity. The growth conditions for B. subtilis GG95 were optimized in TSB media (pH 7) by culturing at $28^{\circ}C$ for 24 hrs. Maltose or fructose and peptone were selected as the best carbon and nitrogen sources, respectively. Greenhouse experiment was performed to test effectiveness of B. subtilis GG95 in the control sclerotinia rot. Drench application ($1{\times}10^8cfu/mL$, 3 times) of the bacterial culture broth to lettuce showed an effectiveness value of 88%, suggesting that B. subtilis GG95 would be a promising biocontrol agent for control of sclerotinia rot.

Enhanced Calreticulin Expression Promotes Calcium-dependent Apoptosis in Postnatal Cardiomyocytes

  • Lim, Soyeon;Chang, Woochul;Lee, Byoung Kwon;Song, Heesang;Hong, Ja Hyun;Lee, Sunju;Song, Byeong-Wook;Kim, Hye-Jung;Cha, Min-Ji;Jang, Yangsoo;Chung, Namsik;Choi, Soon-Yong;Hwang, Ki-Chul
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.390-396
    • /
    • 2008
  • Calreticulin (CRT) is one of the major $Ca^{2+}$ binding chaperone proteins of the endoplasmic reticulum (ER) and an unusual luminal ER protein. Postnatally elevated expression of CRT leads to impaired development of the cardiac conductive system and may be responsible for the pathology of complete heart block. In this study, the molecular mechanisms that affect $Ca^{2+}$-dependent signal cascades were investigated using CRT-overexpressing cardiomyocytes. In particular, we asked whether calreticulin plays a critical role in the activation of $Ca^{2+}$-dependent apoptosis. In the cells overexpressing CRT, the intracellular calcium concentration was significantly increased and the activity of PKC and level of SECAR2a mRNA were reduced. Phosphorylation of Akt and ERKs decreased compared to control. In addition the activity of the anti-apoptotic factor, Bcl-2, was decreased and the activities of pro-apoptotic factor, Bax, p53 and caspase 8 were increased, leading to a dramatic augmentation of caspase 3 activity. Our results suggest that enhanced CRT expression in mature cardiomyocytes disrupts intracellular calcium regulation, leading to calcium-dependent apoptosis.

Microarray analysis of gene expression in raw cells treated with scolopendrae corpus herbal-acupuncture solution (蜈蚣(오공) 약침액(藥鍼液)이 LPS로 처리된 RAW 세포주(細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Bae, Eun-Hee;Lee, Kyung-Min;Lee, Bong-Hyo;Lim, Seong-Chul;Jung, Tae-Young;Seo, Jung-Chul
    • Korean Journal of Acupuncture
    • /
    • v.23 no.3
    • /
    • pp.133-160
    • /
    • 2006
  • Objectives : Scolopendrae Corpus has a broad array of clinical applications in Korean medicine, including treatment of inflammatory conditions such as arthritis. To explore the global gene expression profiles in human Raw cell lines treated with Scolopendrae Corpus herbal-acupuncture solution (SCHAS), cDNA microarray analysis was performed. Methods : The Raw 264.7 cells were treated with lipopolysaccharide (LPS), SCHAS, or both. The primary data was normalized by the total spots of intensity between two groups, and then normalized by the intensity ratio of reference genes such as housekeeping genes in both groups. The expression ratio was converted to log2 ratio. Normalized spot intensities were calculated into gene expression ratios between the control and treatment groups. Greater than 2 fold changes between two groups were considered to be of significance. Results : Of the 8 K genes profiled in this study, with a cut-off level of two-fold change in the expression, 20 genes (BCL2-related protein A1, MARCKS-like 1, etc.) were upregulated and 5 genes (activated RNA polymerase II transcription cofactor 4, calcium binding atopy-related autoantigen 1, etc.) downregulated following LPS treatment. 139 genes (kell blood group precursor (McLeod phenotype), ribosomal protein S7, etc.) were upregulated and 42 genes (anterior gradient 2 homolog (xenopus laevis), phosphodiesterase 8B, etc.) were downregulated following SCHAS treatment. And 10 genes (yeast saccharomyces cerevisiae intergeneic sequence 4-1, mitogen-activated protein kinase 1, etc.) were upregulated and 8 genes (spermatid perinuclear RNA binding protein, nuclear receptor binding protein 2, etc.) were downregulated following co-stimulation of SCHAS and LPS. Discussions : It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacological actions of SCHAS in the treatment of arthritis. But further studies are required to concretely prove the effectiveness of SCHAS.

  • PDF

Immunosuppression-enhancing effect of the administration of allogeneic canine adipose-derived mesenchymal stem cells (cA-MSCs) compared with autologous cA-MSCs in vitro

  • Wi, Hayeon;Lee, Seunghoon;Kim, Youngim;No, Jin-Gu;Lee, Poongyeon;Lee, Bo Ram;Oh, Keon Bong;Hur, Tai-young;Ock, Sun A
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.63.1-63.14
    • /
    • 2021
  • Background: Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable. Objectives: To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient in vitro. Methods: Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for immunosuppressive (IDO, PTGS2, and PTGES), inflammatory (IL6 and IL10), and apoptotic genes (CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR. Results: cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45- and differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs and PBMCs, DLA mismatch between the two cell types induced a significant increase in the expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes. Conclusions: The administration of cA-MSCs matching the recipient DLA type can alleviate the need to regulate excessive immunosuppressive responses associated with genes, such as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low readability of DLA 88.

α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells

  • Ittiudomrak, Teeranai;Puthong, Songchan;Roytrakul, Sittiruk;Chanchao, Chanpen
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.167-179
    • /
    • 2019
  • Ovarian cancer is the fifth main cause of pre-senescent death in women. Although chemotherapy is generally an efficient treatment, its side effects and the occurrence of chemotherapeutic resistance have prompted the need for alternative treatments. In this study, ${\alpha}$-mangostin and apigenin were evaluated as possible anticancer alternatives to the chemotherapeutic drug doxorubicin, used herein as a positive control. The ovarian adenocarcinoma cell line SKOV-3 (ATCC No. HTB77) was used as model ovarian cancer cells, whereas the skin fibroblast line CCD-986Sk (ATCC No. CRL-1947) and lung fibroblast line WI-38 (ATCC No. CCL-75) were used as model untransformed cells. Apigenin and doxorubicin inhibited the growth of SKOV-3 cells in a dose- and time-dependent manner. After 72 hr exposure, doxorubicin was mostly toxic to SKOV-3 cells, whereas apigenin was toxic to SKOV-3 cells but not CCD-986Sk and WI-38 cells. ${\alpha}$-Mangostin was more toxic to SKOV-3 cells than to CCD-986Sk cells. A lower cell density, cell shrinkage, and more unattached (floating round) cells were observed in all treated SKOV-3 cells, but the greatest effects were observed with ${\alpha}$-mangostin. With regard to programmed cell death, apigenin caused early apoptosis within 24 hr, whereas ${\alpha}$-mangostin and doxorubicin caused late apoptosis and necrosis after 72 hr of exposure. Caspase-3 activity was significantly increased in ${\alpha}$-mangostin-treated SKOV-3 cells after 12 hr of exposure, whereas only caspase-9 activity was significantly increased in apigenin-treated SKOV-3 cells at 24 hr. Both ${\alpha}$-mangostin and apigenin arrested the cell cycle at the $G_2/M$ phase, but after 24 and 48 hr, respectively. Significant upregulation of BCL2 (apoptosis-associated gene) and COX2 (inflammation-associated gene) transcripts was observed in apigenin- and ${\alpha}$-mangostin-treated SKOV-3 cells, respectively. ${\alpha}$-Mangostin and apigenin are therefore alternative options for SKOV-3 cell inhibition, with apigenin causing rapid early apoptosis related to the intrinsic apoptotic pathway, and ${\alpha}$-mangostin likely being involved with inflammation.

Bleomycin Inhibits Proliferation via Schlafen-Mediated Cell Cycle Arrest in Mouse Alveolar Epithelial Cells

  • Jang, Soojin;Ryu, Se Min;Lee, Jooyeon;Lee, Hanbyeol;Hong, Seok-Ho;Ha, Kwon-Soo;Park, Won Sun;Han, Eun-Taek;Yang, Se-Ran
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.133-142
    • /
    • 2019
  • Background: Idiopathic pulmonary fibrosis involves irreversible alveolar destruction. Although alveolar epithelial type II cells are key functional participants within the lung parenchyma, how epithelial cells are affected upon bleomycin (BLM) exposure remains unknown. In this study, we determined whether BLM could induce cell cycle arrest via regulation of Schlafen (SLFN) family genes, a group of cell cycle regulators known to mediate growth-inhibitory responses and apoptosis in alveolar epithelial type II cells. Methods: Mouse AE II cell line MLE-12 were exposed to $1-10{\mu}g/mL$ BLM and $0.01-100{\mu}M$ baicalein (Bai), a G1/G2 cell cycle inhibitor, for 24 hours. Cell viability and levels of pro-inflammatory cytokines were analyzed by MTT and enzyme-linked immunosorbent assay, respectively. Apoptosis-related gene expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Cellular morphology was determined after DAPI and Hoechst 33258 staining. To verify cell cycle arrest, propidium iodide (PI) staining was performed for MLE-12 after exposure to BLM. Results: BLM decreased the proliferation of MLE-12 cells. However, it significantly increased expression levels of interleukin 6, tumor necrosis factor ${\alpha}$, and transforming growth factor ${\beta}1$. Based on Hoechst 33258 staining, BLM induced condensation of nuclear and fragmentation. Based on DAPI and PI staining, BLM significantly increased the size of nuclei and induced G2/M phase cell cycle arrest. Results of qRT-PCR analysis revealed that BLM increased mRNA levels of BAX but decreased those of Bcl2. In addition, BLM/Bai increased mRNA levels of p53, p21, SLFN1, 2, 4 of Schlafen family. Conclusion: BLM exposure affects pulmonary epithelial type II cells, resulting in decreased proliferation possibly through apoptotic and cell cycle arrest associated signaling.

Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy

  • Yun-Jeong Jeong;Mi-Hee Yu;Yuna Cho;Min-Young Jo;Kwon-Ho Song;Yung Hyun Choi;Taeg Kyu Kwon;Jong-Young Kwak;Young-Chae Chang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

Meningeal Hemangiopericytomas and Meningomas: a Comparative Immunohistochemical and Genetic Study

  • Trabelsi, Saoussen;Mama, Nadia;Chourabi, Maroua;Mastouri, Maroua Haddaji;Ladib, Mohamed;Popov, Sergey;Burford, Anna;Mokni, Moncef;Tlili, Kalthoum;Krifa, Hedi;Jones, Chris;Yacoubi, Mohamed Tahar;Saad, Ali;Brahim, Dorra H'mida-Ben
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6871-6876
    • /
    • 2015
  • Background: The meningeal hemangiopericytoma (MHPC) is a vascular tumor arising from pericytes. Most intracranial MHPCs resemble meningiomas (MNGs) in their clinical presentation and histological features and may therefore be misdiagnosed, despite important differences in prognosis. Materials and Methods: We report 8 cases of MHPC and 5 cases of MNG collected from 2007 to 2011 from the Neuro-Surgery and Histopathology departments. All 13 samples were re reviewed by two independent pathologists and investigated by immunohistochemistry (IHC) using mesenchymal, epithelial and neuro-glial markers. Additionally, we screened all tumors for a large panel of chromosomal alterations using multiplex ligation probe amplification (MLPA). Presence of the NAB2-STAT6 fusion gene was inferred by immunohistochemical staining for STAT6. Results: Compared with MNG, MHPCs showed strong VIM (100% of cases), CD99 (62%), bcl-2 (87%), and p16 (75%) staining but only focal positivity with EMA (33%) and NSE (37%). The p21 antibody was positive in 62% of MHPC and less than 1% in all MNGs. MLPA data did not distinguish HPC from MNG, with PTEN loss and ERBB2 gain found in both. By contrast, STAT6 nuclear staining was observed in 3 MHPC cases and was absent from MNG. Conclusions: MNG and MHPC comprise a spectrum of tumors that cannot be easily differentiated based on histopathology. The presence of STAT6 nuclear positivity may however be a useful diagnostic marker.

Interleukin-7 Receptor is Indispensable for Proliferation and Survival in Thymic ${\gamma}{\delta}$T Cell Development

  • Kim, Dong-Hyun;Yoon, Byung-Hak;Jung, Joo-Eun;Kim, Hoog-Sook;Ko, Seong-Hee;Choi, Eun-Young;Lee, Kwang-Ho;Kim, Kyung-Jae;Ye, Sang-Kyu;Chung, Myung-Hee
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • Background: Interleukin-7 receptor (IL-7R) ${\alpha}$-deficient mice have small numbers of B cells and ${\alpha}{\beta}$T cells in periphery, they totally lack ${\gamma}{\delta}$T cells. In addition, the V-J recombination and transcription of TCR ${\gamma}$ genes is also severely impaired in IL-7R ${\alpha}$-deficient mice. Stat5, a signaling molecule of the IL-7R, induces germline transcription in the TCR ${\gamma}$ locus, and promotes V-J recombination and ${\gamma}{\delta}$T cell development. However, the roles for IL-7R signaling pathway in thymic or extrathymic ${\gamma}{\delta}$T cell development are largely unknown. Methods: To clarify the role of the IL-7 receptor in proliferation and survival of ${\gamma}{\delta}$T cells, we introduced the TCR ${\gamma}{\delta}$ transgene, $V_{{\gamma}2}/V{\delta}_5$, into IL-7R ${\alpha}$-deficient mice, and investigated the development of ${\gamma}{\delta}$T cells. Results: We found that $V_{{\gamma}2}/V{\delta}_5$ transgene restored ${\gamma}{\delta}$T cells in the epithelium of the small intestine (IEL) but not in the thymus and the spleen. Further addition of a bcl-2 transgene resulted in partial recovery of ${\gamma}{\delta}$T cells in the thymus and the spleen of these mice. Conclusion: Taken together, this study revealed that the IL-7R ${\alpha}$ is indispensable for proliferation and survival mainly in thymic ${\gamma}{\delta}$T cell development.

Growth Arrest by Bufonis Venenum is Associated with Inhibition of Cdc2 and Cdc25C, and Induction of p21WAF1/CIP1 in T24 Human Bladder Carcinoma Cells (섬수 추출물에 의한 T24 인체 방광암세포의 증식억제에 관한 연구)

  • Park Tae Yeol;Park Cheol;Yoon Hwa Jung;Choi Yung Hyun;Ko Woo Shin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1449-1455
    • /
    • 2004
  • Bufonis venenum (dried toad venom; Chinese name, Chan su) is a traditional Chinese medicine obtained from the skin venom gland of the toad. It has long been used in treating arrhythmia and other heart diseases in China and other Asian countries. Additionally, Bufonis venenum has been reported to selectively inhibit the growth of various lines of human cancer cells. In the present study, it was examined the effects of extract of Bufonis venenum (EBV) on the growth of human bladder carcinoma cell line T24 in order to investigate the anti-proliferative mechanism and induction of apoptosis by EBV. Treatment of T24 cells to EBV resulted in the growth inhibition, morphological change and induction of apoptotic cell death in a dose-dependent manner. Flow cytometric analysis revealed that EBV treatment caused G2/M phase arrest of the cell cycle and down-regulation of cyclin A, cyclin B1 and Cdc2, which was associated with a marked up-regulation of cyclin-dependent kinases (Cdks) inhibitor p21 (WAF1/CIP1) in a p53-independent manner. The Cdc25C expression was also significantly inhibited by EBV treatment, however Wee1 kinase expression was not affected. The induction of apoptotic cell death by EBV was connected with down-regulation of anti-apoptotic Bcl-XS/L expression without alteration pro-apoptotic Bax expression. Taken together, these findings suggest that EBV may be a potential chemotherapeutic agent for the control of human bladder carcinorma cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of EBV.