• Title/Summary/Keyword: $Ba(Zn_{1/3}Ta_{2/3})O_3$[BZT] Ceramics

Search Result 8, Processing Time 0.024 seconds

Structural Properties of $Ba(Zn_{1/3}Ta_{2/3})O_3$[BZT] Ceramics with Sintering Temperature (소결온도에 따른 $Ba(Zn_{1/3}Ta_{2/3})O_3$[BZT] 세라믹스의 구조적 특성)

  • Lee, Sang-Chul;Kim, Ji-Hoon;Kim, Kang;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.76-79
    • /
    • 2000
  • The $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics were prepared by conventional mixed oxide method. The structural properties of the BZT ceramics with the sintering temperature were investigated by XRD, SEM. The BZT ceramics have a complex-perovskite structure. The BZT ceramics sintered at $1550^{\circ}C$ had a superstructure plane of BZT(100). Increasing the sintering temperature, the bulk density and ordering were increased. The bulk density of the BZT ceramics sintered at $1550^{\circ}C$ was $7.50[g/cm^3]$. Increasing the sintering temperature, the average grain size were increased and pore were decreased.

  • PDF

The Structural Properties of The Structural Properties of 0.8Ba($Zn_{1/3}Ta_{2/3})O_3$-0.2Ba($Co_{1/3}Nb_{2/3})O_3$ Ceramics with Sintering Temperature (소결온도에 따른 0.8Ba($Zn_{1/3}Ta_{2/3})O_3$-0.2Ba($Co_{1/3}Nb_{2/3})O_3$ 세라믹스의 구조적 특성)

  • Bae, Kyoung-In;Lee, Moon-Kee;Lim, Sung-Soo;Kim, Kang;Ryus, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1667-1669
    • /
    • 2000
  • The 0.8Ba($Zn_{1/3}Ta_{2/3})O_3$-0.2Ba($Co_{1/3}Nb_{2/3})O_3$ ceramics were prepared by conventional mixed oxide method. The structural properties of the 0.8BZT-0.2BCN ceramics with the sintering temperature were investigated by XRD and SEM. The 0.8BZT-0.2BCN ceramics had a superstructure reflection plane of (100), (200). Increasing the sintering temperature. the ordering parameter of B-site atoms were increased. The lattice constant of 0.8BZT-0.2BCN ceramics was 3.97${\AA}$. Increasing the sintering temperature, the average gram sizes were increased. In the case of the 0.8BZT-0.2BCN ceramics sintered at 1500$^{\circ}C$, the average grain size and bulk density were 1.56${\mu}m$, 6.93$g/cm^3$, respectively.

  • PDF

The Structura1 Properties of the $0.6Ba(Zn_{1/3}Ta_{2/3])O_3-0.4Ba(Co_{1/3}Nb_{2/3})O_3$Ceramics with the Sintering Temperature (소결온도에 따른 $0.6Ba(Zn_{1/3}Ta_{2/3])O_3-0.4Ba(Co_{1/3}Nb_{2/3})O_3$ 세라믹스의 구조적 특성)

  • 이상철;류기원;이성갑;배성기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.383-386
    • /
    • 2000
  • The 0.6Ba(Zn$_{1}$3/Ta$_{2}$3/)O$_3$-0.4Ba(Co$_{1}$3/Nb$_{2}$3/)O$_3$ceramics were prepared by the conventional mixed oxide method. The structural properties of the 0.6BZT-0.4BCN ceramics with the sintering temperature were investigated by XRD, SEM. The 0.6BZT-0.4BCN ceramics had a complex-perovskite structure. Increasing the sintering temperature, the peak intensity of the superstructure reflection plane were increased and the density and ordering were increased. The density of the 0.6BZT-0.4BCN ceramics sintered at 1475$^{\circ}C$ was 6.455[g/cm$^3$].

  • PDF

Zinc Vacancy Ordering in BaTEX>$(Zn_1/3Ta2/3)O_3$Ceramics

  • Park, Seong-Jin;Sahn Nahm;Kim, Myong-Ho;Byun, Jae-Dong
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.242-245
    • /
    • 1996
  • The microstructure of $Ba (Zn_{1/3}Ta_{2/3})O_3$ (BZT) was investigated using X-ray diffractometry(XRD) and transmission electron microscopy (TEM). $Ba_{0.5}TaO_3$ and $Ba_3TaO_{5.5}$ (BT) phasses were observed on the surface of the sintered specimen by XRD. Furthermore, a new type of ordering along the [110] direction was found in sintered specimen by the XRD and TEM analysis. The wavelength of ordering was 0.9 nm which is three times larger than the interplanar distance of (110) plane and new type of ordering is considered to be a result of Zn vacancy ordering. The creation of Zn vacancies and formation of BT phases are attributed to the evaporation of volatile ZnO. A new mechanism for ZnO loss is suggested. In this mechanism, only Zn vacancies are created only when the amount of ZnO loss is small and as the amount of ZnO loss increases, BT phases are formed at the same time. A new unit cell of ordered structure is suggested as the superlattics containing three BZT unit cells.

  • PDF

The Effects of $Ta_2O_5$ on Microstructure and Dielectric Properties of $B_a(Zn_{1/3}Ta_{2/3})O_3$ Ceramics. ($Ta_2O_5$ 첨가가 $Ba(Zn_{1/3}Ta_{2/3})O_3$ 세라믹의 미세구조와 유전특성에 미치는 영향)

  • Jeong, Young-Hun;Kim, Min-Han;Son, Jin-Ok;Nahm, Sahn;Park, Jong-Cheol;Kang, Nam-Kee;Lee, Hwack-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.639-643
    • /
    • 2004
  • [ $Ta_2O_5$ ]가 첨가된 $Ba(Zn_{1/3}Ta_{2/3})O_3$[BZT] 세라믹은 1:2 규칙화 정도가 증가하고 $Ba_3Ta_5O_{15}의 이차상이 새롭게 형성된다. $1580^{\circ}C$ 보다 높은 온도에서 소결된 BZT 세라믹은 $Ta_2O_5$를 첨가하면 입자의 성장이 일어나고 액상이 형성된다. 품질계수(Q) 값은 $1580^{\circ}C$ 보다 높은 온도에서 소결할 경우 미량의 $Ta_2O_5$ 첨가만으로도 상당히 증가한다. 상대밀도는 $Ta_2O_5$ 첨가량에 따라 감소하기 때문에 Q값의 증가는 상대밀도와는 무관하다. 반면에, $Ta_2O_5$의 첨가량에 따라 입자의 성장은 증가하였기 때문에 Q값의 향상은 입자크기와 관계가 있음을 알 수 있다. 많은 양의 $Ta_2O_5$ 첨가시 비록 입자 크기가 증가했음에도 불구하고 Q값이 매우 낮은 것을 볼 때, Q값의 감소는 $Ba_3Ta_5O_{15}$ 상의 영향과 낮은 밀도 값에 기인한 것이다.

  • PDF

High Resolution TEM Lattice Images of Modulated Structure Due to Zn Vacancy Ordering in $Ba(Zn_{1/3}Ta_{2/3})O_3$ Ceramics ($Ba(Zn_{1/3}Ta_{2/3})O_3$ 세라믹에서 Zn vacancy 규칙화에 의한 변조구조의 고분해능 TEM 영상관찰)

  • Lee, Hwack-Joo;Ryu, Hyun;Choi, Seong-Jin;Nahm, Sahn;Byun, Jae-Dong
    • Applied Microscopy
    • /
    • v.28 no.1
    • /
    • pp.121-126
    • /
    • 1998
  • Detailed studies of high resolution TEM inages on the modulated structure caused by Zn vacancy ordering along [110] direction in BZT sintered at $1400^{\circ}C$ for 90 hours had revealed that the images which had hexagonal patterns were similar to those obtained from the structure which had no modulation, These images had appeared over the wide ranges from -30 nm to -42 nm in defocus values and from 2 nm to 20 nm in thickness. The computer simulated images showed that the modulation due to Zn vacancy ordering had made a small change in contrast in the interior of hexagonal pattern, which was very difficult to differenciate in experiments. The image which demonstrated the modulated structure very well was the one which obtained at -52 nm in defocus value and 16 nm in thickness.

  • PDF

Structural and Microwave Dielectric Properties of $ZrO_2$Doped Ba(${Zn_{1/3}}{Ta_{2/3}}$)$O_3$Ceramics ($ZrO_2$가 첨가된 Ba(${Zn_{1/3}}{Ta_{2/3}}$)$O_3$의 미세구조 및 유전특성 연구)

  • Cho, Bum-Joon;Yang, Jung-In;Nahm, Sahn;Choi, Chang-Hack;Lee, Hwack-Joo;Park, Hyun-Min;Ryou, Sun-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.117-121
    • /
    • 2001
  • 본 연구에서는 Zr $O_2$첨가가 Ba(Zn$_{1}$3/Ta$_{2}$3/) $O_3$(BZT)세라믹의 구조와 고주파 유전특성에 미치는 영향을 조사하였다. 모든 시료에서 $Ba_{5}$Ta$_4$ $O_{15}$ 이차상이 발견되었으며 Zr $O_2$의 첨가량이 증가하면 $Ba_{5}$Ta$_4$ $O_{15}$ 상의 양은 감소하였다. 반면에 Zr $O_2$의 첨가량이 1.5 mol% 이상인 시료에서는 $Ba_{0.5}$Ta $O_3$상이 발견되었다. BZT의 입자 크기는 약 1$mu extrm{m}$ 정도였지만, Zr $O_2$를 첨가하면 입자 크기가 증가하였다. SEM 및 TEM 분석에 의하여 Zr $O_2$가 첨가되면 액상이 존재하는 것을 알 수 있었으며, 이로 인하여 입자가 성장되는 것이 발견되었다. 시편의 밀도는 소량의 Zr $O_2$를 첨가하면 증가하지만 Zr $O_2$첨가량이 증가하면 감소하였다. 유전율은 모든 시료가 27에서 30 사이의 값을 가지고 있었다. 공진주파수 온도계수는 소량의 Zr $O_2$을 첨가하였을 때는 변화하지 않았지만 첨가량이 2.5 mol% 이상에서는 증가하였다. Q$\times$f 값은 Zr $O_2$을 첨가하면 증가하였고, 입자 성장이 완료되는 조성에서 최대 값을 보였다. 본 연구에서는 Zr $O_2$를 2.0 mol% 첨가하고 15$50^{\circ}C$에서 10시간 소결한 시료에서 최대의 Q$\times$f 값(164,000)을 얻을 수 있었다.다.다.

  • PDF

Zn Vacancy Ordering in $Ba (Zn_{1/3}Ta_{2/3})O_3$ Ceramics

  • Lee, Hwack-Joo;Ryu, Hyun;Choi, Seong-Jin;Nahm, Sahn;Byun, Jae-Dong
    • Applied Microscopy
    • /
    • v.27 no.2
    • /
    • pp.217-223
    • /
    • 1997
  • New type of ordering along 1110] direction was found In BZT sintered at $1400^{\circ}C$ for 90 hours by using X-ray diffraction analysis and high resolution transmission electron microscopy. The wavelength of the modulated structure was 0.9 nm which is three times larger than the interplanar distance of (110) plane. New type of ordering is considered to be formed as a result of Zn vancacy ordering and new structural model was proposed. The computer simulated electron diffraction and the structural images are in good agreement with those obtained by experiments.

  • PDF