• Title/Summary/Keyword: $Ba(Ti_{0.92}Zr_{0.08})O_3$

Search Result 4, Processing Time 0.018 seconds

Dielectric and Piezoelectric Properties of "Lead-free" Piezoelectric Rhombohedral Ba(Ti0.92Zr0.08)O3 Single Crystals

  • Lee, Jong-Yeb;Oh, Hyun-Taek;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.171-177
    • /
    • 2016
  • Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals are fabricated using the cost-effective solid-state single crystal growth (SSCG) method; their dielectric and piezoelectric properties are also characterized. Measurements show that (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals have an electromechanical coupling factor ($k_{33}$) higher than 0.85, piezoelectric charge constant ($d_{33}$) of about 950 [pC/N], and piezoelectric voltage constant ($g_{33}$) higher than 40 [${\times}10^{-3}Vm/N$]. Especially the $d_{33}$ of (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals was by about six times higher than that of their ceramics. Because their electromechanical coupling factor ($k_{33}$) and piezoelectric voltage constant ($d_{33}$, $g_{33}$) are higher than those of soft PZT ceramics, it is expected that rhombohedral (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals can be used as "lead-free" piezoelectric materials in many piezoelectric applications such as actuator, sensor, and transducer.

Electrocaloric Effect and Hystersis Properties of Pb-free Ferroelectric (Ba0.85Ca0.15)(Ti0.92Zr0.08)O3 Ceramics (무연 강유전 (Ba0.85Ca0.15)(Ti0.92Zr0.08)O3 세라믹스의 전기열량 효과 및 강유전 이력 특성)

  • Kim, You-Seok;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.801-805
    • /
    • 2013
  • In this study, electrocaloric effects of Pb-free $(Ba_{0.85}Ca_{0.15})(Ti_{0.92}Zr_{0.08})O_3$ ferroelectric ceramics were investigated and discussed using the characteristics of P-E hysteresis loops at wide temperature range from room temperature to $140^{\circ}C$. The remnant polarization $P_r$ and coercive field $E_c$ were decreased with increasing temperature. The temperature change ${\Delta}T$ by the electrcaloric effect was calculated by Maxwell's relations, and reached the maximum of ~0.15 at $120^{\circ}C$ under applied electric field of 30 kV/cm.

Annealing Effect and Tunability of BaZr0.08Ti0.92O3 Polycrystal Grown in N2 Gas Atmosphere by Floating Zone Technique (Floating Zone Technique법으로 질소분위기 하에서 성장한 BaZr0.08Ti0.92O3 다결정의 Tunability 및 열처리 효과)

  • Hwang, Ho-Byong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1178-1185
    • /
    • 2004
  • In the atmosphere of $N_2$ gas, BaZ $r_{0.08}$ $Ti_{0.92}$ $O_3$ polycrystal was grown by floating zone technique using BaZ $r_{0.08}$ $Ti_{0.92}$ $O_3$ ceramics as a feed and SrTi $O_3$(1l0) single cystal as a seed. The dielectric constant and loss at 10 kHz, 100 kHz, and 1 MHz for the as-grown sample were measured as a function of temperature in the temperature range between -10$0^{\circ}C$ and 150 $^{\circ}C$ to find a dielectric peak with frequency dispersion at Curie point. The hysteresis loop showed that the grown sample had very small polarization which was 0-0.01 $\mu$C/$\textrm{cm}^2$ for the applied dc-electric fields from -7 kV/cm to +7 kV/cm. However, the normal hysteresis loop was appeared after oxygen annealing. The electric-field dependence of the dielectric constant for both the as-grown and the post-annealed samples was studied by measuring the dielectric constants as a function of the biased-electric fields and their tunability was figured out from it at room temperature(27 $^{\circ}C$) and cryotemperature( -73$^{\circ}C$). Tunability for the as-grown sample was 51 % and the figure of merit 20.4 at 10kHz with the biased electric-field of 12 kV/cm. The tunability for the grown sample may be increased up to 80 % if the electric field of 25 kV/cm is applied. Tunability for the post-annealed sample was 41 % and the figure of merit 10.3 at 10 kHz with the biased electric-field of 12 kV /cm. Post-annealing improved the crystallinity of the as-grown sample but decreased its tunability.ability.

Tunability of Ba(Ti0.92Zr0.08)O3 Polycrystal Grown on Ceramic Seed by Floating Bone Technique (세라믹스 종결정 위에 Floating Zone Technique 법으로 성장한 Ba(Ti0.92Zr0.08)O3 다결정의 Tunability)

  • Hwang, Ho-Byong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.771-776
    • /
    • 2004
  • [ $Ba(Zr_{0.08}Ti_{0.92})O_3$ ] polycrystal was grown by floating zone technique with two ellipsoidal mirrors using the $8\%$of Zr-modified BZT ceramics as both a feed rod and a seed crystal. In order to study the annealing effect, a part of the grown crystal was sliced and annealed in the oxygen atmosphere at $1,200^{\circ}C$ for 10 h. The dielectric constant and loss at 10 kHz, 100 kHz, and 1 MHz were measured in the temperature range between $-100^{\circ}C$ and $150^{\circ}C$ to investigate the dielectric properties of the grown polycrystal. The electric-field dependence of the dielectric constant at 10 kHz and 100 kHz was studied by measuring the dielectric constants as a function of the biased-electric fields which ran from -15 kV/cm to 15 kV/cm. Due to the effect of annealing in the oxygen atmosphere, the electric-field tunability of dielectric constants increased from $47.5\%$ to 5 to and the figure of merit for this material from 39.6 to 46.4. Since the figure of merit can be increased to more than 46.4 by increasing the maximum value of the biased-electric fields to more than 15 V/cm, this material nay have a possibility for applications in microwave tuning devices at room temperature.