• 제목/요약/키워드: $Alq_3$

검색결과 524건 처리시간 0.028초

적색과 청색 물질을 사용한 2파장 방식 백색 적층 OLED의 광학 및 전기적 특성 (Optical and Electrical Properties of Two-Wavelength White Tandem Organic Light-Emitting Diodes Using Red and Blue Materials)

  • 박찬석;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제28권9호
    • /
    • pp.581-586
    • /
    • 2015
  • We studied optical and electrical properties of two-wavelength white tandem organic light-emitting diodes using red and blue materials. White fluorescent OLEDs were fabricated using Alq3 : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). White single fluorescent OLED showed maximum current efficiency of 9.7 cd/A, and tandem fluorescent OLED showed 18.2 cd/A. Commission Internationale de l'Eclairage (CIE) coordinates of single and tandem fluorescent OLEDs was (0.385, 0.435), (0.442, 0.473) at $1,000cd/m^2$, respectively. White hybrid OLEDs were fabricated using SH-1 : BD-2 (3 vol.% 10 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 20 nm) as EML. White single hybrid OLED showed maximum current efficiency of 7.8 cd/A, and tandem hybrid OLED showed 26.4 cd/A. Maximum current efficiency of tandem hybrid OLED was more twice as high as single OLED. CIE coordinates of single hybrid OLED was (0.315, 0.333), and tandem hybrid OLED was (0.448, 0.363) at $1,000cd/m^2$. CIE coordinates in white tandem OLEDs compared to those for single OLEDs observed red shift. This work reveals that stacked white OLED showed current efficiency improvement and red shifted emission than single OLED.

란탄계 금속 착화합물을 이용한 다양한 유기 전기 발광 소자의 연구 (A Study on the Various Organic Electroluminescent Devices Using Lanthanide Chelate Metal Complexes)

  • 표상우;이한성;김정수;이승희;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.529-532
    • /
    • 1999
  • 본 연구에서는 유기 전기 발광 소자에서 녹색 발광층으로 사용되는 terbium(Tb) complexes와 europium(Eu) complex, 정공 수송층으로 사용되는 TPD (N, N\`-diphenyl-N,\`(3-methylphenyl)-1, 1\`biphenyl-4, 4\`-diamine), 그리고 전자 수송층으로 사용되는 Alq$_{3}$ (trois(8-hydroxyquinolino)aluminum), Bebq$_2$들의 Uv/Vis. 홉광도와 PL 스펙 트럼과 같은 광학적 특성을 조사하였으며 또한 이러한 물질들을 이용하여 다양한 종류의 유기 전기 발광 소자를 제작하고 제작된 소자들의 전류밀도-전압-조도 등의 전기 . 광학적 특성을 조사하였으며, 그 결과 다 음과 같은 결곤을 얻을 수 있었다. 다양한 ligand를 갖는 Tb complex들의 경우에도 EL 스펙트럼의 파장대 (wavelength)는 546nm~548nm의 녹색 발광을 하는 것을 알 수 있었고, 제작된 소자 중에서 Tb(ACAC)$_3$(Phen) 을 발광충으로 하고, TPD, 그리고 Bebq$_2$를 각각 정공 수송층, 전자 수송 층으로 한 소자가 가장 낮은 구동 전압을 갖는다는 것을 확인하였으며 logJ-logV 특성에서도 모든 전계 구간에서 이러한 구조의 소자가 가장 높은 전류밀도를 나타냈으며 저 전계 구간에서 전류밀도 타이가 가장 컸다. 소자의 전류밀도와 휘도의 관계에 있어서는 제작된 네 종류의 소자 중 Tb(ACAC)3(Cl-Phen)를 발광층으로 하고 TPD, 그리고 Bebq2를 각각 정공 수송층, 전자 수송 층으로 한 소자가 가장 휘도가 우수한 것을 알 수 있었다. 또한 red (europium complex), green (terbium complex), 그리고 blue (TPD) 색깔을 나타내는 유기 재료를 사용하여 한 소자에서 백색 소자를 제작하여 cyclic voltametric방법을 이용하여 각 유기 물질들의 에너지 준위를 조사하여, 각각의 소자들을 에너지 밴드 다이어그램(energy band diagram)으로 자세히 설명하였다.

  • PDF

BCP의 증착 조건에 따른 광학적 특성 및 전도 기구에 미치는 영향 (Influence of the Optical Characteristics and Conductive Mechanism depending on the Deposition Condition of BCP)

  • 김원종;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.980-986
    • /
    • 2009
  • In a triple-layered structure of ITO/N,N'-diph enyl-N,N'bis(3-methylphenyl)-1,1' - biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Al device, we have studied the electrical and optical characteristics of organic light-emitting diodes(OLEDs) depending on the deposition condition of BCP layer. Several different sizes of holes on boat and several different deposition rates were employed in evaporating the organic materials. And then, electrical properties of the organic light-emitting diodes were measured and the performance of the devices was analyzed. It was found that the hole-size of crucible boat and the evaporation rate affect on the surface roughness of BCP layer as well as the performance of the device. When the hole-size of crucible boat and the deposition rate of BCP are 1.2 mm and $1.0\;{\AA}/s$, respectively, average surface roughness of BCP layer is lower and the efficiency of the device is higher than the ones made with other conditions. From the analysis of current density-luminance-voltage characteristics of a triple layered device, we divided the conductive mechanism by four region according to applied voltage. So we have obtained a coefficient of ${\beta}_{ST}$ in schottky region is $3.85{\times}10^{-24}$, a coefficient of ${\beta}_{PF}$ in Poole-Frenkel region is $7.35{\times}10^{-24}$, and a potential barrier of ${\phi}_{FN}$ in Fower-Nordheim region is 0.39 eV.

Use of Self Assembled Monolayer in the Cathode/Organic Interface of Organic Light Emitting Devices for Enhancement of Electron Injection

  • Manna, U.;Kim, H.M.;Gowtham, M.;Yi, J.;Sohn, Sun-young;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1343-1346
    • /
    • 2005
  • Self assembled monolayers (SAM) are generally used at the anode/organic interface to enhance the carrier injection in organic light emitting devices, which improves the electroluminescence performance of organic devices. This paper reports the use of SAM of 1-decanethiol (H-S(CH2)9CH3) at the cathode/organic interface to enhance the electron injection process for organic light emitting devices. Aluminum (Al), tris-(8-hydroxyquionoline) aluminum (Alq3), N,N'-diphenyl-N,N'-bis(3 -methylphenyl)-1,1'- diphenyl-4,4'-diamine (TPD) and indium-tin-oxide (ITO) were used as bottom cathode, an emitting layer (EML), a hole-transporting layer (HTL) and a top anode, respectively. The results of the capacitancevoltage (C-V), current density -voltage (J-V) and brightness-voltage (B-V), luminance and quantum efficiency measurements show a considerable improvement of the device performance. The dipole moment associated with the SAM layer decreases the electron schottky barrier between the Al and the organic interface, which enhances the electron injection into the organic layer from Al cathode and a considerable improvement of the device performance is observed. The turn-on voltage of the fabricated device with SAM layer was reduced by 6V, the brightness of the device was increased by 5 times and the external quantum efficiency is increased by 0.051%.

  • PDF

Efficient Organic White Light-Emitting Device Utilizing SAlq, A Novel Blue Light-Emitting Material

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.773-776
    • /
    • 2002
  • Efficient organic white light-emitting diodes are fabricated by doping [bis(2-methyl-8-quinolinolato) (tripheny-siloxy)aluminium (III)] (SAlq), a blue-emitting layer, with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8-yl)vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 enables to obtain a balanced white light-emission. A device with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nm)/AI shows emission peaks at 456 nm and 482 nm from SAlq and at 570 nm from DCM2. The white light-emitting device shows an external quantum efficiency of about 2.3 %, a luminous efficiency of about 2.4 lm/W, and the CIE chromaticity coordinates of (0.32, 0.37) at 100 cd/m^2. A maximum luminance of about 23,800 cd/m^2. is obtained at 15 V and the current density of 782 mA/cm^2.

  • PDF

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

Efficient White Organic Light-emitting Device by utilizing a Blue-emitter Doped with a Red Fluorescent Dopant

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • Journal of Information Display
    • /
    • 제4권2호
    • /
    • pp.13-18
    • /
    • 2003
  • We synthesized bis (2-methyl-8-quinolinolato)(triphenylsiloxy) aluminum (III) (SAlq), a blue-emitting material having a high luminous efficiency, through a homogeneous-phase reaction. The photoluminescence (PL) and electroluminescence (EL) spectra of SAlq show two peaks at 454 nm and 477 nm. Efficient white light-emitting devices are fabricated by doping SAlq with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8yl) vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 results in light-emission of both blue and orange colors. Devices with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nmj/Al show EL peaks at 456 nm and 482 nm originating from SAlq and at 570 nm from DCM2, resulting in the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.37). The device exhibits an external quantum efficiency of about 2.3 % and a luminous efficiency of about 2.41m/W at 100 $cd/m^2$. A maximum luminance of about 23,800 $cd/m^2$ is obtained at the bias voltage of 15 V.

ITO 표면의 SAM형 습식 개질에 의한 유기 발광 소자의 특성 변화 (Property change of organic light-emitting diodes due to a SAM treatment of the ITO surface)

  • 나수환;주현우;안희철;김태완;송민종;이호식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.314-315
    • /
    • 2008
  • We have studied a property change of organic light-emitting diodes (OLED)s due to a surface reformation of indium-tin-oxide(ITO) substrate. An ITO is widely used as a transparent electrode in light-emitting diodes, and the OLEDs device performance is sensitive to the surface properties of the ITO. The ITO surface reformation could reduce the Schottky barrier at the ITO/organic interface and increase the adhesion of the organic layer onto the electrode. We have studied the characteristics of OLEDs with a treatment by a wet processing of the ITO substrate. The self-assembled monolayer(SAM) was used for wet processing. The characteristics of OLEDs were improved by SAM treatment of an ITO in this work. The OLEDs with a structure of ITO/TPD(50nm)/$Alq_3$(70nm)/LiF(0.5nm)/Al(100nm) were fabricated, and the surface properties of ITO were investigated by using seneral characterization techniques. Self-assembled monolayer introduced at the anode/organic interface gave an improvement in turn-on voltage, luminance and external quantum efficiency compared to the device without the SAM layer. SAM-treatment time of the ITO substrate was made to be 0/10/15/20/25min. The current efficiency of the device with 15min. treated SAM layer was increased by 3 times and the external quantum efficiency by 2.6 times.

  • PDF

Orange Phosphorescent Organic Light-emitting Diodes Using a Spirobenzofluorene-type Phospine Oxides as Host Materials

  • Jeon, Young-Min;Lee, In-Ho;Lee, Chil-Won;Lee, Jun-Yeob;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2955-2960
    • /
    • 2010
  • Spiro-type orange phosphorescent host materials, 9-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-1P) and 5-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-2P) were successfully prepared by a lithiation reaction followed by a phosphination reaction with diphenylphosphinic chloride. The EL characteristics of OPH-1P and OPH-2P as orange host materials doped with iridium(III) bis(2-phenylquinoline)acetylacetonate ($Ir(pq)_2acac$) were evaluated. The electroluminescence spectra of the ITO (150 nm)/DNTPD (60 nm)/NPB (30 nm)/OPH-1P or OPH-2P: $Ir(pq)_2acac$ (30 nm)/BCP (5 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) devices show a narrow emission band with a full width at half maximum of 75 nm and $\lambda_{max}$ = 596 nm. The device obtained from OPH-1P doped with 3% $Ir(pq)_2acac$ showed an orange color purity of (0.580, 0.385) and an efficiency of (14 cd/A at 7.0 V). The ability of the OPH-P series to combine a high triple energy with a low operating voltage is attributed to the inductive effect of the P=O moieties and subsequent energy lowering of the LUMO, resulting in the enhancement of both the electron injection and transport in the device. The overall result is a device with an EQE > 8% at high brightness, but operating voltage of less than 6.4 V, as compared to the literature voltages of ~10 V.

증착 온도에 따른 IZO 박막의 구조적 및 전기적 특성 (Structural and electrical characteristics of IZO thin films with deposition temperature)

  • 전대근;이유림;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.67-74
    • /
    • 2011
  • In this study, we have investigated the effect of the substrate temperature on the structural and the electrical characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering under various substrate temperature. The substrate temperature has been changed from room temperature to $400^{\circ}C$. Samples which were deposited under $250^{\circ}C$ show amorphous structure. The electrical resistivity of crystalline-IZO (c-IZO) film was higher than that of amorphous-IZO (a-IZO) film. And the electrical resistivity showed minimum value near $150^{\circ}C$ of deposition temperature. The OLED device was fabricated with different IZO substrates made by configuration of IZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show better current density-voltage-luminance characteristics than that of OLED devices with the commercial crystalline-ITO (c-ITO) anode film. It can be explained that very flat surface roughness and high work function of a-IZO anode film lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers. This suggests that a-IZO film is a promising anode materials substituting conventional c-ITO anode in OLED devices.