• Title/Summary/Keyword: $Alq_3$

Search Result 524, Processing Time 0.031 seconds

Organic Light-Emitting Diodes Fabricated from $Alq_3$ in Different Crystalline Polymorphs

  • Kaji, Hironori;Fukushima, Tatsuya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.185-188
    • /
    • 2008
  • We have analyzed the structures of $Alq_3$ in different polymorphs by solid-state NMR. On the basis of the results, OLEDs were fabricated from different polymorphs of $Alq_3$. The current efficiency of the device fabricated from the mixture of $\alpha$-, $\gamma$-, and $\delta-Alq_3$ powders was higher than that from $\alpha-Alq_3$.

  • PDF

Electroluminescence of a red fluorescent dye doped in an $Alq_{3}$:rubrene Mixed Host

  • Kang, Hee-Young;kang, Gi-Wook;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.948-951
    • /
    • 2003
  • The electroluminescence (EL) properties were studied in organic light-emitting diodes with a red fluorescent dye, 4- (dicyanomethylene)- 2- tert-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl)- 4H- pyran (DCJTB) doped into tris-(8-hydroxyquinoline)aluminum ($Alq_{3}$), rubrene and the mixed matrix of $Alq_3$ and rubrene. The device with DCJTB doped into the $Alq_{3}$:rubrene mixed host shows an efficient red emission from DCJTB with a negligible EL emission from $Alq_{3}$ and a lower EL onset voltage compared to the device with DCJTB doped into the $Alq_{3}$ only host. The quantum efficiency is almost temperature-independent for the device with the $Alq_3:rubrene$ mixed host. The results indicate that recombination of injected electrons and holes occurs on rubrene and subsequent energy transfer to DCJTB dominates in the device with the $Alq_{3}$:rubrene mixed host.

  • PDF

A Study on the Electron Transfer at the Alq3/Ba and Alq3/Au Interfaces by NEXAFS Spectroscopy (NEXAFS 분광법에 의한 Alq3/Ba과 Alq3/Au의 계면에서의 전자 천이에 관한 연구)

  • Lim, Su-Yong;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Tris(8-quinolinolato)aluminum(III); $Alq_3$ has been frequently used as an electron transporting layer in organic light-emitting diodes. Either Ba with a low work function or Au with a high work function was deposited on $Alq_3$ layer in vacuum. And then, the behaviors of electron transition at the $Alq_3$/Ba and $Alq_3$/Au interfaces were investigated by using the near edge x-ray absorption fine structure (NEXAFS) spectroscopy. In the each interface, the energy levels of unoccupied obitals were assigned as ${\pi}^*$(LUMO, LUMO+1, LUMO+2 and LUMO+3) and ${\sigma}^*$. And the relative intensities of these peaks were investigated. In an oxygen atom composing $Alq_3$ molecule, the relative intensities for a transition from K-edge to LUMO+2 were largely increased as Ba coverage (${\Theta}_{Ba}$, 2.7 eV) with a low work function was in-situ sequentially increased on $Alq_3$ layer. In contrast, the relative intensities for the LUMO+2 peak were reduced as Au coverage (${\Theta}_{Au}$, 5.1 eV) with a high work function were increased on $Alq_3$ layer. This means that the electron transition by photon in oxygen atom which consists in the unoccupied orbitals in $Alq_3$ molecule, largely depends on work function of a metal. Meanwhile, in the case of electron transition in a carbon atom, as ${\Theta}_{Ba}$ was increased on $Alq_3$, the relative intensity from K-edge to ${\pi}_1{^*}$ (LUMO and LUMO+1) was slightly decreased, and from K-edge to ${\pi}_2{^*}$ (LUMO+2 and LUMO+3) was somewhat increased. This rising of the energy state from ${\pi}_1{^*}$ to ${\pi}_2{^*}$ exhibits that electrons provided by Ba would contribute to the process of electron transition in the $Alq_3$/Ba interfaces. As shown in above observation, the analyses of NEXAFS spectra in each interface could be important as a basic data to understand the process of electron transition by photon in pure organic materials.

Characteristics of OLEDs Using $Alq_2-Ncd\;and\;Alq_2-Nq$ as Emitting Layer ($Alq_2-Ncd$$Alq_2-Nq$를 이용한 유기전기발광 소자의 특성)

  • Yang, Ki-Sung;Shin, Hoon-Kyu;Kim, Chung-Kyun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.447-450
    • /
    • 2003
  • In this paper, new luminescent material, 6,11-dihydoxy-5,12-naphtacene-dione Alq3 complex (Alq2-Ncd), 1,4-dihydoxy-5,8-naphtaquinone Alq3 complex(Alq2-Nq) was synthesized. And extended efforts had been made to obtain high-performance electroluminescent(EL) devices, since the first report of organic light-emitting diodes(OLEDS) based on tris-(8-hydroxyquinoline) aluminum(Alq3). We have performed investigate characterization of the materials. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured by Flat Panel Display Analysis System(Model 200-AT) at room temperature. An intensive research is going on to improve the device efficiency using the hole injection layer, different electrodes, and etc. By using the hole injection layer, the charge-injection can be controlled and the stability could be improved. This study indicates not only the sterical effect but also some other effects would be responsible for the change of the emission wavelength.

  • PDF

Comparative Investigation on the Light Emitting Characteristics of OLED Devices with a Single Layer of Alq3 and a Double Layer of Rubrene/Alq3

  • Jeong, Geon-Su;Lee, Bung-Ju;Kim, Hui-Seong;;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.246.2-246.2
    • /
    • 2014
  • Green-light emitting OLED with single layer of Alq3 and orange-light emitting OLED with double layer of rubrene/Alq3 as EML were fabricated and characterized comparatively. The two OLED devices were based on an anode of ITO, HTL of TPD, and cathode of Al, respectively. The green light emitting OLED was then prepared with Alq3 as both ETL and EML, while the orange-light emitting OLED was prepared with rubrene deposited on Alq3. All the component layers of the OLED devices were deposited by a thermal evaporation technique in vacuum. Photoluminescence characteristics of the EML layers were investigated. Electrolumiscence characteristics of the OLED devices were comparatively investigated.

  • PDF

Optical Characteristics and Electric Field Dependency of $Alq_3$ Thin Film (Alq3박막의 광학특성과 전계 의존성)

  • Lee, Cheong-Hak;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1358-1360
    • /
    • 1998
  • In this paper, organic thin film LED(light emitting diode) having ITO glass/$Alq_3$/Al structure using an $Alq_3$ was fabricated by the vacuum evaporation and the absorbance, wave length, 1-V characteristics were investigated. Electroluminescence of green and wavelength of 510[nm] were observed in this device. We observed absorbance form 320[nm] to 430[nm] and knew unstability of $Alq_3$ material as light emitting device.

  • PDF

Electroluminescence Characteristics and Electrical Conduction of Alq$_3$ thin film (Alq$_3$ 박막의 전기전도와 발광특성)

  • 이청학;유선규;이종찬;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.439-442
    • /
    • 1998
  • In this paper, organic thin film LED(light emitting diode) having ITO glass/Alq$_3$/Al structure using an Alq$_3$ was fabricated by the vacuum evaporation and the absorbance, wave length, I-V characteristics were investigated, Electroluminescence of green and wavelength of 510[nm] were observed in this device. We observed absorbance form 320[nm] to 430[nm] and knew unstability of Alq$_3$ material as light emitting device.

  • PDF

Light-emitting devices with polymer-organic heterostructure

  • Do, Lee-Mi;Hwang, Do-Hoon;Choi, Kang-Hoon;Lee, Hyang-Mok;Jung, Sang-Don;Zyung, Taehyoung
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.116-119
    • /
    • 1997
  • Highly quantum efficient and multi-color emissible polymer light emitting devices have been realized utilizing poly (1-dodecyloxy-4-methyl-1, 3-phenylene)(2, 5"-terthienylene)(hereafter, mPTTh polymer) as an emitting layer and tris(8-hydroxyquinoline) aluminum (Alq3) as an electron transport layer. A single layer EL device of mPTTh polymer emits orange-colored light. EL efficiency increases as the thickness of Alq3 layer increases, but the emission color becomes visually broad when the Alq3 layer thickness is greater than 30nm since the relative peak intensity of green EL from Alq3 layer grows. EL color is changed from orange to greenish orange as the thickness of Alq3 layer grows. EL color is changed from orange to greenish orange as the thickness of Alq3 layer increases. EL efficiency of the double layer device was greatly enhanced by 3000 times compared with that of a single layer device. Alq3 layer in device acts as a hole blocking electron transporting layer and an emitting layer as a function of the thickness of Alq3 layer.ayer.

Sequential Formation of Multiple Gap States by Interfacial Reaction between Alq3 and Alkaline-earth Metal

  • Kim, Tae Gun;Kim, Jeong Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.129.2-129.2
    • /
    • 2013
  • Electron injection enhancement at OLED (organic light-emitting diodes) cathode side has mostly been achieved by insertion of a low work function layer between metal electrode and emissive layer. We investigated the interfacial chemical reactions and electronic structures of alkaline-earth metal (Ca, Ba)/Alq3 [tris(8-hydroxyquinolinato)aluminium] and Ca/BaF2/Alq3 using in-situ X-ray & ultraviolet photoelectron spectroscopy. The alkaline-earth metal deposited on Alq3 generates two energetically separated gap states in sequential manner. This phenomenon is explained by step-by-step charge transfer from alkali-earth metal to the lowest unoccupied molecular orbital (LUMO) states of Alq3, forming new occupied states below Fermi level. The BaF2 interlayer initially prevents from direct contact between Alq3 and reactive Ca metal, but it is dissociated into Ba and CaF2. However, as the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with underlying Alq3. The influence of the multiple gap state formation by the interfacial chemical reaction on the OLED performance will be discussed.

  • PDF

A Study on the Dielectric Polarization of $ITO/Alq_3/Al$ Structure Organic Light-emitting Diodes ($ITO/Alq_3/Al$ 구조 유기 발광 소자의 유전분극 현상의 연구)

  • Oh, Yong-Cheul;Shin, Cheol-Gi;Kim, Chung-Hyeak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.73-77
    • /
    • 2008
  • We have investigated dielectric polarization in organic light-emitting diodes using 8-hydroxyquinoline aluminum($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric polarization of organic light-emitting diodes using characteristics of impedance and equivalent circuit of $ITO/Alq_3/Al$. Impedance characteristics was measured complex impedance Z and phase ${\theta}$ in the frequency range of $1{\times}40Hz\;to\;1{\times}10^8Hz$. We obtained complex electrical conductivity, dielectric constant, and loss tangent(tan${\delta}$) of the device at room temperature. And, we obtained the equivalent circuit of $ITO/Alq_3/Al$ through analyzing dielectric constant and dielectric loss tangent. From these analyses, we could interpret a conduction mechanism and dielectric polarization.