• 제목/요약/키워드: $Al_2O_3/a-Si/Al_2O_3$ structure

검색결과 239건 처리시간 0.039초

부분적으로 Co(Ⅱ) 이온으로 치환한 제올라이트 A를 탈수한 후 메탄올을 흡착한 결정구조 (Crystal Structure of a Methanol Sorption Complex of Dehydrated Partially Cobalt(Ⅱ)-Exchanged Zeolite A)

  • 장세복;한영욱;김양
    • 대한화학회지
    • /
    • 제38권5호
    • /
    • pp.339-344
    • /
    • 1994
  • 부분적으로 $Co^{2+}$이온으로 치환한 제올라이트 A를 탈수한 후 메탄올을 흡착한 결정구조 즉 $Co_4Na_4Si_{12}Al_{12}O_{48}{\cdot}$6.5CH_3OH$ (a = 12.169(1) $\AA)$를 입방공간군 Pm$\bar3$m를 사용하여 단결정 X-선 회절법으로 해석하고 정밀화하였다. $Co_4Na_4$-A 제올라이트를 $360^{\circ}C$ 에서 $2{\times}10^{-6}$ torr하에서 2일간 진공탈수한 후 $22(1)^{\circ}C$에서 약 104 torr의 메탄올 증기로 약 1시간 동안 흡착시켜 결정을 만들었다. Full matrix최소자승법 정밀화 계산에서 I > $3\sigma(I)$인 147개의 독립반사를 사용하여 최종오차인자를 $R_1$ = 0.061, $R_2$ = 0.060까지 정밀화시켰다. 단위세포당 4개의 $Co^{2+}$ 이온과 1.5개의 $Na^+$ 이온은 6-링 산소와 결합하고 있었다. 4개의 $Co^{2+}$ 이온은 O(3)의 (111)평면에서 큰 동공쪽으로 약 0.44 $\AA$ 들어가 위치하고 1.5개의 $Na^+$ 이온은 O(3)의 (111)평면에서 소다라이트 동공 깊숙히 약 0.55 $\AA$ 들어간 자리에 위치하고 있다. 2.5개의 $Na^+$ 이온은 8-링 평면상에 위치한다. 단위세포당 약 6.5개의 메탄올 분자가 흡착되었다. 이들 메탄올 분자는 큰 동공내에 위치하고 있고, 4개의 $Co^{2+}$이온과 2.5개의 $Na^+$이온과 결합하고 있다. 4개의 메탄올의 산소는 6-링에 위치한 $Co^{2+}$이온과 결합하고 나머지 2.5개의 메탄올의 산소는 8-링에 위치한 $Na^+$이온과 결합하고 있다.

  • PDF

제올라이트 X 착물의 결정구조 (Crystal Structure of a Carbon Monoxide Sorption Complex of Fully $Ca^{2+}$-Exchanged Zeolite X)

  • 이석희;김용권;정경화;김남석;박근호
    • 한국응용과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.28-34
    • /
    • 2005
  • The structure of a carbon monoxide sorption complex of dehydrated fully $Ca^{2+}$-exchanged zeolite X, $|Ca_{46}(CO)_{27}|[Si_{100}Al_{92}O_{384}]$-FAU, has been determined in the cubic space group $Fd\;{\overline{3}}$ at $21^{\circ}C$ (a = 24.970(4) ) by single-crystal X-ray diffraction techniques. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous ${Ca(NO_3)_2}$ for three days, followed by dehydration at $400^{\circ}C$ and $2{\times}10^{-6}$ Torr for two days, and exposure to 100 Torr of zeolitically dry carbon monoxide gas at $21^{\circ}C$. The structure was determined in this atmosphere and was refined, using the 356 reflections for which $F_o$ > $4{\sigma}(F_o)$, to the final error indices $R_1$ = 0.059 and $wR_2$ = 0.087. In this structure, $Ca^{2+}$ ions occupy three crystallographic sites. Sixteen $Ca^{2+}$ ions fill the octahedral site I at the centers of hexagonal prisms (Ca-O = 2.415(7) ${\AA}$). The remaining 30 $Ca^{2+}$ ions are found at two nonequivalent sites II (in the supercages) with occupancies of 3 and 27 ions. Each of these $Ca^{2+}$ ions coordinates to three framework oxygens, either at 2.276(10) or 2.298(8) ${\AA}$, respectively. Twenty-seven carbon monoxide molecules have been sorbed per unit cell, three per supercage. Each coordinates to one of the latter 16 site-II $Ca^{2+}$ ions: C-Ca = 2.72(8) ${\AA}$. The imprecisely determined N-C bond length, 1.26(14) ${\AA}$, differs insignificantly from that in carbon monoxide(g), 1.13 ${\AA}$.

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

이차 열처리가 PtMn계 스핀밸브의 거대자기저항 특성에 미치는 영향 (The Second Annealing Effect on Giant Magnetoresistance Properties of PtMn Based Spin Valve)

  • 김광윤;김민정;김희중
    • 한국자기학회지
    • /
    • 제11권2호
    • /
    • pp.72-77
    • /
    • 2001
  • DC 마그네트론 방식으로 제조한 PtMn계 상부층형(top) 스핀밸브 박막을 반강자성층인 PtM의 fcc (111) 구조에서 fat (111)구조 천이를 위하여 27$0^{\circ}C$에서 3 kOe의 외부자장을 가해주면서 일차적인 열처리를 한 후, 이차적으로 무자장 열처리를 하여 상온에서 자기적 특성을 조사하였다. Si/A1$_2$O$_3$ (500$\AA$)/Ta(50$\AA$)NiFe(40$\AA$)/CoFe(17$\AA$)/Cu(28$\AA$)/CoFe (30$\AA$)PtMn(200$\AA$)Ta(50$\AA$) top 스핀밸브 시료에서 자기저항비를 조사한 결과 열처리 온도가 높아질수록 자기저항비가 완만히 감소하나 325 $^{\circ}C$ 이상에서 급격히 감소하여 1 %까지 감소하는 것을 확인하였으며, 이것은 열처리 온도가 높아질수록 반강자성층과 피고정층사이의 교환 결합력이 약해지는 것에 기인하는 것으로 판단하였다. 열처리 온도 증가에 따른 교환 바이어스 자장은 325 $^{\circ}C$ 이상에서 급격히 감소하였고, 고정층과 자유층사이의 상호 결합 세기(interlayer coupling field, $H_{int}$)는 $325^{\circ}C$ 이상에서 크게 증가하였는데, 이것은 열처리 온도가 증가함에 다라 Mn의 상호 확산(inter-diffusion)dl 증가하여 계면에서의 거칠기(roughness)가 커지기 때문이라고 생각하였다. 이와 같은 결과에서 PtMn 스핀밸브의 급격한 자기적 특성변화가 일어나는 열처리 온도가 PtMn계 스핀밸브 박막의 블로킹 온도(blocking temperature, $T_b$)와 잘 일치함을 호가인할 수 있었다.

  • PDF

Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully $Cd^{2+}$-Exchanged Zeolite X

  • 김양;염영훈;최은영;김안나;한영욱
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권11호
    • /
    • pp.1222-1227
    • /
    • 1998
  • The crystal structure of a benzene sorption complex of fully dehydrated Cd2+-exchanged zeolite X, Cd46Si100Al92O384·43C6H6 (a=24.880(6) Å), has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21 ℃. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous Cd(NO3)2 for 3 d, followed by dehydration at 400 ℃ and 2 x 10-6 Torr for 2 d, followed by exposure to about 92 Torr of benzene vapor at 22 ℃. The structure was determined in this atmosphere and refined to the final error indices R1=0.054 and Rw=0.066 with 561 reflections for which I > 3σ(I). In this structure, Cd2+ ions are found at four crystallographic sites: eleven Cd2+ ions are at site 1, at the centers of the double six-oxygen rings; six Cd2+ ions lie at site I', in the sodalite cavity opposite to the double six-oxygen rings; and the remaining 29 Cd2+ ions are found at two nonequivalent threefold axes of unit cell, sites Ⅱ' (in the sodalite cavity ) and site Ⅱ (in the supercage) with occupancies of 2 and 27 ions, respectively. Each of these Cd2+ ions coordinates to three framework oxylkens, either at 2.173(13) or 2.224(10) Å, respectively, and extends 0.37 Å into the sodalite unit or 0.60 Å into the supercage from the plane of the three oxygens to which it is bound. The benzene molecules are found at two distinct sites within the supercages. Twenty-seven benzenes lie on threefold axes in the large cavities where they interact facially with the latter 27 site-Ⅱ Cd2+ ions (Cd2+-benzene center=2.72 Å; occupancy=27 molecules/32 sites). The remaining sixteen benzene molecules are found in 12ring planes; occupancy=16 molecules/16 sites. Each hydrogen of these sixteen benzenes is ca. 2.8/3.0 Å from three 12-ring oxygens where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.

제올라이트 Beta, USY, Mordenite 촉매를 이용한 Methylnaphthalene의 트랜스메틸화 반응 (Transmethylation of Methylnaphthalene Over Beta, USY and Mordenite Zeolite Catalysts)

  • 박중남;박용기;백진욱;홍석인;이철위
    • Korean Chemical Engineering Research
    • /
    • 제43권5호
    • /
    • pp.560-565
    • /
    • 2005
  • 1-methylnaphthalene(1-MN)과 2-methylnaphthalene(2-MN) 사이에서의 트랜스메틸화 반응을 제올라이트, H-mordenite(HM), H-Beta$(H{\beta})$, H-USY(HUSY) 촉매를 이용한 고정층 반응기에서 수행하였다. $H{\beta}_{25}(SiO_2/Al_2O_3=25)$ 촉매는 다음과 같은 조건, 반응온도 $350^{\circ}C$, 반응압력 1.5 Mpa, 전체 액상 반응물의 WHSV $2.7g_{feed}/g_{cat}{\cdot}h$, 반응물 1-MN과 2-MN의 몰비 1:1, 반응 1시간에서 2-MN/1-MN 비=2.3와 2,6-DMN/2,7-DMN 비=1.3을 보이면서 다른 촉매보다 높은 전환율과 안정성을 나타내었다. 촉매의 세공구조, 산성도와 관련하여 촉매성능을 해석하였다.

UV Laser를 이용한 Borosilicate-Glass (BSG)층의 선택적 에미터 형성 (Selective Emitter Formation of Borosilicate-Glass (BSG) Layer using UV Laser)

  • 김가민;장효식
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.727-731
    • /
    • 2021
  • In this study, we have investigated a selective emitter using a UV laser on BBr3 diffusion doping layer. The selective emitter has two regions of high and low doping concentration alternatively and this structure can remove the disadvantages of homogeneous emitter doping. The selective emitters were fabricated by using UV laser of 355 nm on the homogeneous emitters which were formed on n-type Si by BBr3 diffusion in the furnace and the heavy boron doping regions were formed on the laser regions. In the optimized laser doping process, we are able to achieve a highly concentrated emitter with a surface resistance of up to 43 Ω/□ from 105 ± 6 Ω/□ borosilicate glass (BSG) layer on Si. In order to compare the characteristics and confirm the passivation effect, the annealing is performed after Al2O3 deposition using an ALD. After the annealing, the selective emitter shows a better effect than the high concentration doped emitter and a level equivalent to that of the low concentration doped emitter.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Physico-chemical and mineralogical study of ancient mortars used in Harran area (Turkey)

  • Binici, Hanifi;Akcan, Mehmet;Aksogan, Orhan;Resatoglu, Rifat
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.639-658
    • /
    • 2017
  • Very limited studies have been accomplished concerning the historical structures around Harran area. Collected mortar samples from the historic structures in the area were tested to explore their mechanical, chemical and mineralogical properties. Mortar samples from three different points of each historical structure were taken and specified in accordance with the related standards taking into consideration their mechanical, chemical and mineralogical properties. By means of SEM-EDX the presence of organic fibres and calcite, quartz, plagioclase and muscovite minerals has been examined. Additionally, by means of XRF analysis, oxide ($SiO_2$, $Al_2O_3$, and $Fe_2O_3$) percentages of mortar ingredients have been specified, also. According to the test results obtained, it was confirmed that the mortars had densities ranging between $1.51-2.10g/cm^3$, porosity values ranging between 8.89-35.38% and compressive strengths ranging between 5.02-5.90 MPa. Specimen HU, which has the highest durability and lowest water absorption and porosity, was the mortar taken from the most intact building in the mosque complex. This result is most likely due to the very little fine aggregate content of HU. In contrast, HUC mortars with a small amount of fine particles and brick contents yielded slightly lower compressive strengths. The interesting point of this study is the mineralogical analysis results and especially the presence of ettringite in these historic mortars linked to the use of pozzolanic materials. Survival of these historic structures in Harran Area through centuries of use and, also, having been subjected to many earthquakes can probably be explained by these properties of the mortars.

데칼법을 이용한 연속 제조 공정에서의 고분자 전해질 연료전지용 전극 개발 (Development of a MEA Made by Decal Method in PEM Fuel Cells)

  • 임성대;박석희;윤영기;양태현;김창수
    • 신재생에너지
    • /
    • 제6권1호
    • /
    • pp.46-52
    • /
    • 2010
  • Membrane electrode assemblies (MEAs) for proton exchange membrane fuel cells (PEMFCs) have been extensively studied to improve their initial performance as well as their durability and to facilitate the commercialization of fuel cell technology. To improve the MEA performance, particularly at low Pt loadings, many approaches have been made. In the present study, MEA performance improvement was performed by adding $TiO_2$ particles into the catalyst layer of MEA. Most of previous studies have focused on the MEA performance enhancement under low humidity conditions by adding metal oxides into the catalyst layer mainly due to the water keeping ability of those metal oxides particles such as $Al_2O_3$, $SiO_2$ and zeolites. However, this study mainly focused on the improvement of MEA performance under fully humidified normal conditions. In this study, the MEA was prepared by decal method aiming for a continuous MEA fabrication process. The decal process can make very thin and uniform catalyst layer on the surface of electrolyte membrane resulting in very low interfacial resistance between catalyst layer and the membrane surface and uniform electrode structure in the MEA. It was found that the addition of $TiO_2$ particles into the catalyst layer made by decal method can minimize water flooding in the catalyst layer, resulting in the improvement of MEA performance.