• Title/Summary/Keyword: $Al_2O_3$ particles

Search Result 504, Processing Time 0.028 seconds

Effec of different zirconia primers on shear bond strengths of composite resin to bonded zirconia (지르코니아 프라이머 종류에 따른 복합레진-지르코니아의 전단결합강도)

  • Shi, Hong-Bing;Kim, Tae-Seok;Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The aim of this research was to evaluate the influence of different surface treatments on the shear bond strength of zirconia ceramic to composite resin. Methods: Seventy two cylinder-shape (diameter: 5 mm; height: 12 mm) blocks of experimental industrially manufactured Y-TZP ceramic were abraded with $125{\mu}m\;Al_2O_3$ particles and randomly divided into 4 groups. All the materials were categorized as group Gc(control group - composite resin veneering on zirconia surface), Gr - composite resin veneering after surface treatment of Rocatec system (3M ESPE, Seefeld, Germany) group; Gz - composite resin veneering after surface treatment of Zirconia primer (Z-primer, Bisco, U.S.A) group; Gm - composite resin veneering after surface treatment of zirconia primer (Monobond plus, ivoclar vivadent AG, Liechtenstein) group. Two different zirconia primers and Rocatec system were used to zirconia cylinders (n=16) onto the zirconia surface. Zirconia specimens, polished and roughened, were pretreated and composite bilayer cylinders bonded using conventional adhesive techniques. Results: Shear bond strengths were analyzed using single-factor ANOVA(p<0.05). Bond strength values achieved after airbone particle abrasion and zirconia surface pre-treatments(p<0.05). Conclusion: Shear bond strength tests denmonstrated that zirconia primer is a viable method to improved bond strength between zirconia ceramic core and veneering composites.

Effect of non-thermal plasma on the shear bond strength of resin cements to Polyetherketoneketone (PEKK)

  • Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • PURPOSE. This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS. Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with $50{\mu}m$ $Al_2O_3$ particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling ($5^{\circ}C$ to $55^{\circ}C$ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS. The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION. The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.

A study on improving the surface morphology of recycled wafer forsolar cells using micro_blaster (Micro blaster를 이용한 태양전지용 재생웨이퍼의 표면 개선에 관한 연구)

  • Lee, Youn-Ho;Jo, Jun-Hwan;Kim, Sang-Won;Kong, Dae-Young;Seo, Chang-Taeg;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • Recently, recycling method of waste wafer has been an area of solar cell to cut costs. Micro_blasting is one of the promising candidates for recycling of waste wafer due to their extremely simple and cost-effective process. In this paper, we attempt to explore the effect of micro_blasting and DRE(damage removal etching) process for solar cell. The optimal process conditions of micro_blasting are as follows: $10{\mu}m$ sized $Al_2O_3$ powder, jetting pressure of 400 kPa, and scan_speed of 30 cm/s. And the particles formed on micro_blasted wafer were removed by DRE precess which was performed by using HNA(HF/$HNO_3$/$CH_3COOH$) and TMAH(tetramethyl ammonium hydroxide). Structural analysis was done using a-step and the XRD patterns.

The effects of calcium aluminate cement according to particle sizes on calvarial bone defects in rats (백서 두개골 결손부에서 입자 크기에 따른 Calcium aluminate cement의 효과)

  • Shin, Jung-A;Yun, Jeong-Ho;Oh, Seung-Han;Paik, Jeong-Won;Choi, Se-Young;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.769-779
    • /
    • 2002
  • This present study was carried out to find the effects of calcium aluminate cement($CaO\;{\cdot}\;Al_2O_3$, CAC), which has been developed with bio-compatibility and mechanical properties, in biological environments. Two different particle sizes of CAC - 3.5${\mu}m$ vs. 212${\sim}$250${\mu}m$ which is recommended in periodontal bone grafting procedures-were filled in 8mm calvarial defect in Sprague-Dawley rat. The specimens were examined histologically, especially the bone-cement interface and the response of surrounding tissues. The results are as follows; 1. In the control group, inflammatory cells were observed at 2 weeks. At 8 weeks, periosteum and dura mater were continuously joined together in the defect areas. But in the center of defect area were filled up with the loose connective tissues. 2. In the experimental group l($212{\mu}m{\sim}250{\mu}m$ particle), immature bone was formed and outermost layer was surrounded by osteoid layer at 2 weeks. Osteoblasts were arranged between immature bone and osteoid layer. And, osteoid layer was remained until 8 weeks after surgery. 3. In the experimental group 2, periosteum and dura mater lost its continuity at 2 weeks. Scattering of CAC particles and infiltration of inflammatory cells were observed, which this findings deepened at 8 weeks. The result of this study shows that when calvarial defects in white rats are filled with calcium aluminate cement of 212${\sim}$250${\mu}m$, the materials are to be bio-compatible in growth and healing on surrounding tissues. When further researches are fulfilled, such as direct bone adhesion and bone regeneration ability, it's possible that CAC could be applied to various periodontology fields in the future.

Mineralogical and Physico-chemical Properties of Sludge Produced During Artificial Sand Processing (국내 화강암류를 이용한 일부 인공쇄석사 제조과정에서 발생되는 슬러지의 광물.물리화학적 특성)

  • Yoo, Jang-Han;Kim, Yong-Ug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.303-311
    • /
    • 2007
  • The consumption of artificially crushed sands exceeds more than 30 percent of the domestic sand supply in South Korea, and its rate is still increasing. For the manufacture of crushed sand granites and granitic gneisses are preferred, fine fractions (i.e. sludge, particles finer than 63 microns) are removed by use of flocculation agents, and its amount occupy about 15 wt%. The sludges consist of quartz, feldspars, micas, chlorite/vermiculite, kaolinites, smectites and occasionally calcite. Among the clay minerals micas are usually predominant, and $14{\AA}$ minerals, kaolinites and smectites are rather scarce. Jurassic granites usually contain more kaolinites and smectites than those of Cretaceous to Tertiary granites, probably due to longer geologic ages. On the other hand, sludge from Precambrian gneiss does not contain kaolinites and smectites. Chemical analyses for the granites and their sludges show rather clear differences in most of major chemical components. Except for $SiO_2,\;Na_2O\;and\;K_2O$, all other components represent rather clear increase. Decrease of $SiO_2$ content is attributed to the relative decrease of quartz in the sludges. And the $Na_2O decrease is caused by a relatively stronger weathering property of albite compared to Ca plagioclase. The $K_2O$ content shows rather small differences throughout the whole samples. The increases of $Al_2O_3$ and other major components resulted from weathering processes and most of colored components are also concentrated in the sludges. Particle size analyses reveal that the sludges are categorized as sandy loams in a sand-silt-clay triangular diagram. The sludge is now classified as industrial waste because of its impermeability, and this result was also confirmed by rather higher hydraulic conductivities. For the environmental problems, and accomplishing effective sand manufacture, more fresh rocks with little weathering products must be chosen.

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

A Study on the Emulsion Polymerization of Methyl Methacrylate (Methyl Methacrylate의 Emulsion Polymerization에 關한 硏究)

  • Lee, Hyung-Kyoo;Min, Tae-Ik
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.4-11
    • /
    • 1968
  • With the selected emulsifiers for the emulsion polymerization of methyl methacrylate, the HLB of the emulsifier in the reaction system has been studied on the effect of the ratio of tetra sodium-N-(1,2-dicarboxy ethyl)-N-octadecyl sulfosuccinamate(Aerosol 22) to polyethylene glycol nonyl phenyl ether (Noigen EA 160), and also sodium lauryl sulfate(Quolac EX-UB), Disodium-N-octadecyl sulfosuccinamate (Aerosol 18) and Aerosol 22 as emulsifiers having various hydrophilic groups in the molecules have been studied. Results are as follows; 1) The viscosity of the emulsions and the molecular weight of the polymers have maximum values at a constant HLB value of emulsifiers, but their stabilities show minimum point at the value with the titration with the three kinds of mono, bi, tri-valent electrolytes. These results are agreed on the theory of Greth & Wilson in which the properties of polymer emulsions depend upon the HLB system of emulsifiers. 2) The viscosity of the emulsions and the molecular weights of the produced polymers increase more in the case of blending of Aerosol 22 to Noigen EA-160 than of the separate using. 3) The coagulation effects of the divalent electrolytes($ex,\;Ca^{++},\;Zn^{++}$) are contrast to the effects of monovalent($ex,\;Na^+$) and trivalent($ex,\;Al^{+++}$) in the emulsions with Aerosol 18 or Aerosol 22 which have more than two hydrophilic groups. It seems that the stability of the O/W emulsions by electrolytes is directly related to the parameters of surface physical chemistry such as surface geometry of surface chemical constitution of polymer particles.

  • PDF

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Numerical Study of Forced Convection Nanofluid in Double Pipe (이중관 내부 나노유체의 강제대류에 관한 수치적 연구)

  • Lim, Yun-Seung;Choi, Hoon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.147-156
    • /
    • 2019
  • Numerical study was performed to investigate the convective heat transfer of Al2O3/water nanofluid flowing through the concentric double pipe counterflow heat exchangers. Hot fluid flowing through the inner pipe transfers its heat to cooling fluid flowing in the outer pipe. Effects of important parameters such as hot and cold volume flow rates, fluid type in the outer and inner pipes, and nanoparticles concentration on the heat transfer and flow characteristics are investigated. The results indicated that the heat transfer performance increases with increasing the hot and cold volume flow rates, as well as the particle concentrations. When both outer and inner pipes are nanofluids with 8% nanoparticle volume concentration, nanofluids showed up to 17% better heat transfer rate than basic fluids. Also, the average heat transfer coefficient of the base fluid for annulus-side improved by 31%. Approximately 20% enhancement in the heat exchanger effectiveness can be achieved with the addition of 8% alumina particles in base fluid. But, addition of nanoparticles to the base fluid enhanced friction factor by about 196%.

Improvement in Mechanical Strength of α-Alumina Hollow Fiber Membrane by Introducing Nanosize γ-Alumina Particle as Sintering Agent (소결조제로 나노크기 γ-알루미나 입자의 도입에 따른 α-알루미나 중공사 분리막의 기계적 강도 향상)

  • Kim, Yong-Bin;Kim, Min-Zy;Arepalli, Devipriyanka;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.150-162
    • /
    • 2022
  • In the field of water treatment and pharmaceutical bio an alumina hollow fiber membrane used for mixture separation. However, due to the lack of strengths it is very brittle to handle and apply. Therefore, it is necessary to study and improve the bending strength of the membrane to 100 MPa or more. In this study, as the mixing ratio of the nano-particles increased to 0, 1, 3, and 5 wt%, the viscosity of the fluid mixture increased. The pore structure of the hollow membrane produced by interrupting the diffusion exchange rate of the solvent and non-solvent during the spinning process suppresses the formation of the finger-like structure and gradually increases the ratio of the sponge-like structure to improve the membrane mechanical strength to more than 100 MPa. As a result, an interparticle space was ensured to improve the porosity of the sponge-like structure with high permeability, and it showed excellent N2 permeability of about 100000 GPU and high water permeability of 3000 L/m2 h. Therefore, it can be concluded, that the addition of γ-Al2O3 nanoparticles as sintering aid is an important method to enhance the mechanical strength of the α-alumina hollow fiber membrane to maintain high permeability.