• 제목/요약/키워드: $Al_2O_3$ particles

검색결과 503건 처리시간 0.028초

아공정, 공정, 과공정 조성의 Al-Cu 주조합금에서의 Y2O3 분말의 분산 거동에 대한 연구 (An Investigation of Dispersion Behavior of Y2O3 Ceramic Particles in Hypo, Eutectic and Hyper Binary Al-Cu Cast Alloys)

  • 박진주;김광호;홍성모;이상훈;이민구;이창규
    • 한국분말재료학회지
    • /
    • 제14권2호
    • /
    • pp.123-126
    • /
    • 2007
  • In this work, the dispersion behavior of $Y_2O_3$ particles in binary aluminum (Al)-copper (Cu) cast alloy was investigated with respect to Cu contents of 20 (hypoeutertic), 33 (eutectic) and 40 (hypereutectic) wt.%. In cases of hypo and hypereutectic compositions, SEM images revealed that the primary Al and ${\theta}$ phases were grown up at the beginning, respectively, and thereafter the eutectic phase was solidified. In addition, it was found that some of $Y_2O_3$ particles can be dispersed into the primary Al phase, but none of them are is observed inside the primary 6 phase. This different dispersion behavior of $Y_2O_3$ particles is probably due to the difference in the val- ues of specific gravity between $Y_2O_3$ particles and primary phases. At eutectic composition, $Y_2O_3$ particles were well dispersed in the matrix since there is few primary phases acting as an impediment site for particle dispersion during solidification. Based on the experimental results, it is concluded that $Y_2O_3$ particles are mostly dispersed into the eutectic phase in binary Al-Cu alloy system.

SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동 : I. 실험 (R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: I. Experiment)

  • 박관수;이승환;이재형
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.359-367
    • /
    • 2000
  • Particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC have been fabricated to investigate their R-curve behaviors and toughening mechanisms. Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ showed rising R-curve behavior owing to the strong crack bridging by SiC particles. The fracture toughness reached 9.1 MPa {{{{ SQRT {m} }} at the crack length of 1000${\mu}{\textrm}{m}$. On the other hand, ZrO2-toughened Al2O3 had a high flat R-curve since it rose steeply in the short crack region due to the well known transformation toughening. For Al2O3/ZrO2/SiC composites, the R-curve behavior was similar to that of Al2O3/SiC but with slightly higher toughness. The SiC particles in this composite decreased the amount of transformable tetragonal phase to reduce the effect of transformation toughening by 50%. It was also found that the fracture toughness of this composite with two different toughening mechanisms was markedly lower than that estimated by the simple addition of two contributions.

  • PDF

Chemical Reaction between Aluminium and graphite Crucible During the Fabrication of Spherical Monosized Al particles

  • Kwon, Hansang
    • 한국분말재료학회지
    • /
    • 제25권2호
    • /
    • pp.99-103
    • /
    • 2018
  • Spherical monosized pure aluminum (Al) particles are successfully fabricated by the pulsated orifice ejection method (POEM). The surface reaction between Al and the graphite crucible is investigated by analysing the microstructure and chemical composition of the materials. No significant chemical reaction occurs between Al and the graphite owing to the crystalline Al oxide (${\gamma}-Al_2O_3$) layer generated in the initial state. The ${\gamma}-Al_2O_3$ layer is clearly observed in all regions between the Al particles and graphite via transmission electron microscopy and confirmed by the selected area diffraction pattern. The morphology of the ${\gamma}-Al_2O_3$ layer perfectly follows the surface morphology of the graphite crucible, which showed nanoscale roughness. This implies that molten Al could not directly contact graphite even though the surface of the crucible became rough to some extent. However, this passivation phenomenon allowed the successful fabrication of monosized pure Al particles. Therefore, POEM is a useful process at least to manufacture monosized pure Al particles.

CMnAl TRIP Steel Surface Modification During CGL Processing

  • Gong, Y.F.;Lee, Y.R.;Kim,, Han-S.;Cooman, B.C.De
    • Corrosion Science and Technology
    • /
    • 제9권2호
    • /
    • pp.81-86
    • /
    • 2010
  • The mechanisms of selective oxidation of intercritically annealed CMnAl TRIP steels in a Continuous Galvanizing Line (GCL) were studied by cross-sectional observation of the surface and sub-surface regions by means of High Resolution Transmission Electron Microscopy (HR-TEM). The selective oxidation and nitriding of an intercritically annealed CMnAl TRIP steel in a controlled dew point 10%$H_2+N_2$ atmosphere resulted in the formation of c-xMnO.$MnO_2$ (1${\leq}$x<3) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) particles on the steel surface. Single crystal c-xMnO.$SiO_2$ ($2{\leq}x{\leq}4$) oxide particles were also observed on the surface. A thin film of crystalline c-xMnO.$SiO_2$ (2${\leq}$x<3) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) was present between these particles. In the sub-surface region, internal oxidation, nitriding and intermetallic compound formation were observed. In the first region, large crystalline c-xMnO.$SiO_2$ ($1{\geq}x{\geq}2$) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) oxides particles were present. In the second region, c-AlN particles were observed, and in a third region, small $MnAl_x$ (x>1) intermetallic compound particles were observed.

이성분 나노유체($NH_3/H_2O$+나노입자)의 흡수성능 촉진실험 (Experimental of Absorption Performance Enhancement for Binary Nanofluids($NH_3/H_2O$ + Nano Particles))

  • 이진기;정청우;구준모;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.124-129
    • /
    • 2008
  • The objectives of this paper are to examine the effect of nano-particles on the pool type absorption heat transfer enhancement and to find the optimal conditions to design a highly effective compact absorber for $NH_3/H_2O$ absorption system. The effect of $Al_2O_3$ and CNT particles on the absorption performance is studied experimentally. The experimental ranges of the key parameters are 20% of $NH_3$ concentration, $0{\sim}0.08%$ (volume fraction) of CNT particles, and $0{\sim}0.06%$ (volume fraction) of $Al_2O_3$ nano-particles. For the $NH_3/H_2O$ nanofluids, the heat transfer rate and absorption rate with 0.02 vol% $Al_2O_3$ nano-particles were found to be 28.9% and 17.8% higher than those without nano-particles, respectively. It is recommended that the concentration of 0.02 vol% of $Al_2O_3$ nano-particles be the best candidate for $NH_3/H_2O$ absorption performance enhancement.

  • PDF

$Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향 (The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite)

  • 이수영;임경호;전병세
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

Al2O3와 SiC 강화재가 첨가된 Al-Cu 기지 복합재료의 소결, 재압축 및 기계적 특성에 관한 연구 (Study on the Sintering, Repressing and Mechanical Properties of Al2O3 and Al-Cu-SiC Composites)

  • 박정수;이성규;안재환;정형식
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.171-178
    • /
    • 2004
  • Effects of liquid phase and reinforcing particle morphology on the sintering of Al-6 wt%Cu-10 vol% $Al_2O_3$ or SiC particles were studied in regards to densification, structure and transverse rupture properties. The Al-Cu liquid phase penetrated the boundaries between the aluminum matrix powders and the interfaces with reinforcing particles as well, indicating a good wettability to the powders. This enhanced the densification during sintering and the resulting strength and ductility. Since most of the copper added, however, was dissolved in the liquid phase and formed a brittle $CuAl_2$ phase upon cooling rather than alloyed with the aluminum matrix, the strengthening effect by the copper was not fully realized. Reinforcing particles of agglomerate type were found less suitable for the liquid phase sintering than solid type particles. $Al_2O_3$ and SiC particles protluced little difference on the sintering behavior but their size had a large effect. Repressing of the sintered composites increased density and bending properties but caused debonding at the matrix-particle interfaces and also fracturing of the particles.

Bi-materials of Al-Mg Alloy Reinforced with/without SiC and Al2O3 Particles; Processing and Mechanical Properties

  • Chang, Si-Young;Cho, Han-Gyoung;Kim, Yang-Do
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.354-361
    • /
    • 2007
  • The bi-materials with Al-Mg alloy and its composites reinforced with SiC and $Al_2O_3$ particles were prepared by conventional powder metallurgy method. The A1-5 wt%Mg and composite mixtures were compacted under $150{\sim}450\;MPa$, and then the mixtures compacted under 400 MPa were sintered at $773{\sim}1173K$ for 5h. The obtained bi-materials with Al-Mg/SiCp composite showed the higher relative density than those with $Al-Mg/Al_2O_3$ composite after compaction and sintering. Based on the results, the bi-materials compacted under 400 MPa and sintered at 873K for 5h were used for mechanical tests. In the composite side of bi-materials, the SiC particles were densely distributed compared to the $Al_2O_3$ particles. The bi-materials with Al-Mg/SiC composite showed the higher micro-hardness than those with $Al-Mg/Al_2O_3$ composite. The mechanical properties were evaluated by the compressive test. The bi-materials revealed almost the same value of 0.2% proof stress with Al-Mg alloy. Their compressive strength was lower than that of Al-Mg alloy. Moreover, impact absorbed energy of bi-materials was smaller than that of composite. However, the bi-materials with Al-Mg/SiCp composite particularly showed almost similar impact absorbed energy to $Al-Mg/Al_2O_3$ composite. From the observation of microstructure, it was deduced that the bi-materials was preferentially fractured through micro-interface between matrix and composite in the vicinity of macro-interface.

알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 II. 피복형 $Al_2O_3-SiC$ 복합분말의 합성 (Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides II. Synthesis of Coated Type $Al_2O_3-SiC$ Composite Powders)

  • 이홍림;김규영
    • 한국세라믹학회지
    • /
    • 제30권3호
    • /
    • pp.243-249
    • /
    • 1993
  • Coated type Al2O3-SiC composite powders were synthesized by surface modification method. Transformation temperature to $\alpha$-Al2O3 of Al2O3 monolith was 115$0^{\circ}C$ whereas increased to 1200, 1250, 130$0^{\circ}C$ with increment of SiC content to 5, 15, 25wt%. Transformation temperature to $\alpha$-Al2O3 was lowered by $\alpha$-Al2O3 seeding. FTIR data analysis and electron micrographs showed that Al2O3 particles were effectively coated on SiC particles.

  • PDF

Mo첨가가 $Al_2O_3$ 세라믹스의 미세구조 및 기계적 성질에 미치는 영향 (Effects of Mo Addition on the Microstructures and Mechanical Properties of $Al_2O_3$ Ceramics)

  • 박정현;문성환;백승수;정동익
    • 한국세라믹학회지
    • /
    • 제25권3호
    • /
    • pp.201-206
    • /
    • 1988
  • Mo 입자의 첨가가 Al_2O_3$ 세라믹스의 미세구조와 기계적 성질에 미치는 영향을 알아보기 위하여 평균입경이 2-micron인 Mo와 6-micron인 Mo를 Al_2O_3$에 각 분산시켜 1$600^{\circ}C$, $H_2$ 분위기에서 5시간 소결하였다. Mo는 Al_2O_3$의 입자성장을 억제시켰으며 Mo의 입자가 작을 때 그 효과는 크게 나타났다. 2-micron Mo를 분산한 경우 꺽임강도와 파괴인성은 크게 증가하여하였으며, 6-micron Mo를 분산한 경우 강도는 증가하지 않았으나 파괴인성은 다소 증가하였다. Al_2O_3$-Mo계의 인성증진기구는 균열편향에 의한 파단면의 증가와 미세균열에 의한 균열전파에너지의 분산에 의한 것으로 보인다.

  • PDF