• Title/Summary/Keyword: $Al_2O_3$ addition

Search Result 769, Processing Time 0.023 seconds

Electrical Properties of Barium-Titanates with addition $Sb_2O_3$ ($Sb_2O_3$첨가량에 의한 Barium-Titanates의 전기적 성질)

  • Park, Chang-Yeop;Wang, Jin-Seok;Kim, Hyeon-Jae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.1
    • /
    • pp.5-14
    • /
    • 1977
  • "Electrical Properties of Barium Titanates with Addition Sb2O3." PTC BaTiO3 in low resistance at room temperature was prepatred. Al2O3, SiO2 and TiO2 were doped with a view to improving reproduction. Sb2O3 was doped as impurity in order to control of resistivity of the specimens. The relations between the amount of Sb3O3 and electrical properties wereinvestigated. Of the compositions studied, additions of 3.75mole% Al2O3, 1.25mole% SiO2, 2.25mole% TiO2 and 0.16~0.25wt% Sb2O3 to BaTiC3 was low resistivity in 14-300 ohm-cm.00 ohm-cm.

  • PDF

Synthesis of $TiB_2-Al_2O_3$ Composite by Self-Propagating High Temperature Synthesis (SHS) and Its Pressureless Sintering (SHS법에 의한 $TiB_2-Al_2O_3$계 복합물의 합성 및 상압소결에 관한 연구)

  • 최상욱;조동수;김세용;남건태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.552-560
    • /
    • 1994
  • A composite of TiB2-Al2O3 system was successfully prepared from a mixture of TiO2, B2O3, and Al by self-propagating high temperature synthesis (SHS) with a novel characteristic, utilizing the internal oxidation heat of aluminium metal of the mixture, instead of by a conventional technique, externally heating a mixture of Ti, B and Al2O3. From a mixture with B/Ti molar ratio of =2.0, pure two phases of TiB2 and $\alpha$-Al2O3 with good crystallinity and small, uniform sizes were formed. However, when the B/Ti molar ratio of the mixture goes to a value less than 2.0, in addition to the above main minerals, a small smounts of metastable phases such as TiB and Ti3B4 were formed. It was found that about 60%, the optimum green density of compacts gave their highest reaction rate and temperature during SHS process. TiB2-Al2O3 system composite with B/Ti molar ratio of =2.0 could be pressurelessly sintered even at 190$0^{\circ}C$ under Ar gas flows without any addition of sintering aids, showing their good properties such as 91.2% in relative density, 2750 kgf/$\textrm{mm}^2$ in Vickers hardness and 2620 kgf/$\textrm{cm}^2$ in flexural strength.

  • PDF

Mechanical Properties and Wear Behaviour of $Al/SiC/Al_{2}O_{3}$ Composite Materials ($Al/SiC/Al_{2}O_{3}$복합재료의 기계적 성질 및 마멸특성)

  • 임흥준;김영한;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2498-2508
    • /
    • 1993
  • $Al/SiC/Al_{2}O_{3}$ hybrid composites are fabricated by squeeze infiltration method. From the misconstructive of $Al/SiC/Al_{2}O_{3}$ hybrid composites fabricated by squeeze infiltration method, uniform distribution of reinforcements and good bondings are found. Hardness value of $Al/SiC/Al_{2}O_{3}$ hybrid composites increases linearly with the volume fraction of reinforcement because SiC whisker and $Al_{2}$O$_{3}$ fiber have an outstanding hardness. Optimal aging conditions are obtained by examining the hardness of $Al/SiC/Al_{2}O_{3}$ hybrid composites with different aging time. Tensile properties such as Young's modulus and ultimate tensile strength are improved up to 30% and 40% by the addition of reinforcements, respectively. Failure mode of $Al/SiC/Al_{2}O_{3}$ hybrid composites is ductile on microstructural level. Through the abrasive wear test and wear surface analysis, wear behaviour and mechanism of 6061 aluminum and $Al/SiC/Al_{2}O_{3}$ hybrid composites are characterized under various testing conditions. The addition of SiC whisker to $Al/SiC/Al_{2}O_{3}$ composites gives rise to improvement of the wear resistance. The wear resistance of $Al/SiC/Al_{2}O_{3}$ hybrid composites is superior to that of Al/SiC composites. The wear mechanism of aluminum alloy is mainly abrasive wear at low speed range and adhesive and melt wear at high speed range. In contrast, that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is abrasive wear at all speed range, but severe wear when counter material is stainless steel. As the testing temperature increases, wear loss of aluminum alloy decreases because the matrix is getting more ductile, but that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is hardly varied. Oil lubricant is more effective to reduce the wear loss of aluminum alloy and $Al/SiC/Al_{2}O_{3}$ hybrid composites at high speed range.

The Study of Sintering Characteristics in LAS(Li2O.Al2O3.SiO2) System (LAS($Li_2O.Al_2O_3.SiO_2$)계 소지의 소결특성에 관한 연구)

  • Lee, Eung-Sang;Park, Hyun;Kim, Dong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.127-135
    • /
    • 1992
  • It has been reported that natural petalite showed a low negative thermal coefficient and wide coefficient and wide coexisting region with liquid phase in Li2O-Al2O3-SiO2 system. Therefore, we investigated variation of microstructure and thermal and mechanical properties when the amount of SiO2 content in petalite compound and MgO addition to it compound were changed. As SiO2 content exceeded 80 wt%, crystal phases of $\beta$-cristobalite and $\beta$-spondumene solid solution were formed. Generally, the densification and bending strength were increased by the addition of MgO, but the positive thermal coefficient was found in the case of MgO 10 wt% addition because of second phase and glassy phase.

  • PDF

Low-temperature phase stability and mechanical properties of $Y-Nb-TZP/Al_2O_3$ compoites ($Y-Nb-TZP/Al_2O_3$ 복합체의 저온 상안정성 및 기계적 특성)

  • 이득용;김대준;조경식;장주웅
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.634-639
    • /
    • 1998
  • $Y_2O_3$ and $Nb_2O_5$ co-doped zirconia composites containing 10~30 vol% $Al_2O_3$ with two different particle sizes were sintered for 5 h at $1550^{\circ}C$ to evaluate low-temperature phase stability of the composite using X-ray diffractometry after heat-treatments for 1000 h at $250^{\circ}C$ in air or for 5 h at $180^{\circ}C$ in 0.3 MPa $H_2O$ vapor pressure. No tetragonal to monoclinic phase transformation during degradation, so called enhanced low-temperature phase stability, was observed for all composites. It is concluded that Nb addition to the composite for the phase stability is more effective than $Al_2O_3$ addition. The optimum combination of strength (670 MPa) and fracture toughness ($7.1{\textrm} {MPam}^{1/2}$) were obtained for the composite containing 20 vol% of $Al_2O_3$ with 2.8 $\mu$m to 0.2 $\mu$m, the flexural strength increases but the fracture toughness decreases.

  • PDF

Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Mechanical Properties and Solid Lubricant Wear Behavior of MMCs Reinforced with a Hybrid of $Al_{2}O_{3}$ and Carbon Short Fibers (알루미나와 탄소단섬유를 혼합한 금속복합재료의 기계적 성질과 고체윤활 마모거동)

  • 송정일;봉하동;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.968-980
    • /
    • 1995
  • Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites are fabricated by the direct squeeze infiltration method. From the microstructure of Al/Al$_{2}$O$_{3}$/C composites, uniform distribution of reinforcements and good bondings are found. Optimum processing conditions for preforms and squeeze castings are suggested. Mechanical properties, such as elastic modulus, elongation, 0.2% offset yield strength and ultimate tensile strength are obtained. Through the abrasive were test and wear surface analsis, wear behavior and its mechanism of AC2B aluminum and Al/Al$_{2}$O$_{3}$/C composites can be characterized under various sliding speed conditions. Tensile strenght elongation of Al/Al$_{2}$O$_{3}$/C composites are decreased with increasing the addition of carbon fiber. On the contrary, elastic modulus of Al/Al$_{2}$O$_{3}$/C composites is slightly improved compared with that of the unreinforced matrix alloy. The addition of carbon fiber to al/al$_{2}$O$_{3}$/C composites gives rise to improvement of the wear resistance. Specially, carbon chopped fibers play an important role in interfering sticking between the counter material and metal matirix composites. Al/Al$_{2}$O$_{3}$/C composites are suitable to high speed due to solid lubication of carbon. And wear model of Al/Al$_{2}$O$_{3}$/C composites is suggested by the examination of worn surfaces.

Effect of ${Fe_2}{O_3}$ Addition on Mechanical and Optical Properties of t-$ZrO_2$/${Al_2}{O_3}$ Composites (${Fe_2}{O_3}$ 첨가에 따른 t-$ZrO_2$/${Al_2}{O_3}$ 복합체의 기계적 및 광학적 특성)

  • Lee, Deuk-Yong;Kim, Dae-Joon;Lee, Myung-Hyun;Park, Il-Seok;Choi, Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.354-358
    • /
    • 2000
  • Tetragonal (t)-ZrO2/Al2O3 composites doped with Y2O3, Nb2O5, and Fe2O3 ((Y, Nb, Fe)-TZP/Al2O3) were prepared over the range containing Fe2O3 from 0.1 to 0.5 mol% with 0.1 mol% intervals to evaluate the effect of Fe2O3 addition on chromaticity, hydrothermal stability, and mechanical property of the composites. After autoclaving for 20 h at 18$0^{\circ}C$ under 3.5 MPa water vapor pressure, no tlongrightarrowm phase transformation was observed probably due to the preferential solid solubility of Fe2O3 in Al2O3, the presence of the rigid Al2O3 particles, and the inherent phase stability of (Y, Nb)-TZP. The optimized strength and the fracture toughness of the composite were 700 MPa and 8.5 MPa.m1/2, respectively, when 0.1 mol% Fe2O3 was added. The composites have shown a gradual color change from a slightly white ivory to a pale yellowish brown with increasing the Fe2O3 concentration.

  • PDF

Effect of Ethanol as a Dispersant and pH on the Particle Size and Phase Formation in the Synthesis of K+-β"-Al2O3 by Solution State Reaction (액상반응에 의한 K+-β"-Al2O3 합성시 분산첨가제 에탄올과 pH가 입도 및 상형성에 미치는 영향)

  • Cho, Do-Hyung;Kim, Woo-Sung;Shin, Jae-Ho;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ in the $K_2O-Li_2O-Al_2O_3$ ternary system was synthesized using aluminum nitrate solution as a starting material. For the synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$, raw materials with chemical composition of $0.84K_2O{\cdot}0.082Li_2O{\cdot}5.2Al_2O_3$ were mixed in solution state. The effects of dispersant and solution-pH were investigated in minimizing the particle size and on the synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$. Ethanol was used for a dispersant, and $NH_4OH$ solution and nitric acid were added for pH adjustment. The solution pH was increased from 1.0 to 7.5 by 0.5 increments. Each sample was calcined at $1200^{\circ}C$ for 2 h and characterized with X-ray diffraction and particle size analyzer. The pH of solution significantly effected both particle size and phase formation, while the addition of ethanol only effected particle size. The synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ was favored by addition of nitric acid (for pH control).

An Effect of $Al_{2}O_{3}$ on the Reaction between Molten Converter Slag and CaO pellet (용융전로(熔融轉爐)슬래그와 CaO펠렛의 상호반응(相互反應)에 미치는 $Al_{2}O_{3}$의 영향(影響))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.3-9
    • /
    • 2006
  • As a basic study on the conversion of molten converter slag to the ordinary portland cement, the effects of $Al_{2}O_{3}$ addition on the interface reaction between solid CaO and molten converter slag has been studied. Alumina added converter slag whose basicity was controlled to 1 and 2 was melted and hold for 30 minutes in MgO crucible at $1500^{\circ}C$. Then sintered CaO pellet heated at the same temperature was dipped into the molten slag and held for 30minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of CaO pellet with the addition of $Al_{2}O_{3}$ was measured by the change of the radius or sintered CaO pellet and the interface layer was observed by SEM/EDX. As a result. At the basicity 2 slag, thickness of created $C_{3}S$ layer increased 3.5 times and quantity of $C_{6}AF_{2}\;or\;C_{4}AF$ phase increase 2 times than baisicy 1 slag.