• Title/Summary/Keyword: $Al_2Ca$

Search Result 1,516, Processing Time 0.029 seconds

Two Anhydrous Zeolite X Crystal Structures, $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}\;and\;Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$ (제올라이트 X의 두 개의 무수물 $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}$$Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$의 결정구조)

  • Choi, Eun Young;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.384-385
    • /
    • 1999
  • Two anhydrous crystal structures of fully dehydrated, $Ca^{2+}$- and $Tl^+$-exchanged zeolite X, TEX>$Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}($Ca_{18}Tl_{56}$-X;\alpha=24.883(4)\AA)$ and TEX>$Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}($Ca_{32}Tl_{28}$-X;\alpha=24.973(4)\AA)$ per unit cell, have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ $Ca_{18}Tl_{56}-X$ was prepared by ion exchange in a flowing stream of 0.045 M aqueous $Ca(NO_3)_2$ and 0.005 M $TlNO_3$. $Ca_{32}Tl_{28}-X$ was prepared similarly using a mixed solution of 0.0495 M $Ca(NO_3)_2$ and 0.0005M $TlNO_3$. Each crystal was then dehydrated at 360 $^{\circ}C$ and $2{\times}10^{-6}$ Torr for 2 days. Their structures were refined to the final error indices, $R_1=0.039\;and\;R_2=0.036$ with 382 reflections for $Ca_{18}Tl_{56}-X$ , and $R_1=0.046\;and\;R_2=0.045$ with 472 reflections for $Ca_{32}Tl_{28}$-X for which $/>3\sigma(I).$ In the structures of dehydrated $Ca_{18}Tl_{56^-}X\;and\;Ca_{32}Tl_{28}$-X, $Ca^{2+}\;and\;Tl^+$ ions are located at six crystallographic sites. Sixteen $Ca^{2+}$ ions fill the octahedral sites I at the centers of double six rings ($Ca_{18}Tl_{56}$-X:Ca-O=2.42(1) and O-Ca-O=93.06(4)$^{\circ}$; $Ca_{32}Tl_{28}$-X Ca-O=2.40(1) $\AA$ and O-Ca-O=93.08(3)$^{\circ}$). In the structure of $Ca_{18}Tl_{56}$-X, another two $Ca^{2+}$ ions occupy site II (Ca-O=2.35(2) $\AA$ and O-Ca-O=111.69(2)$^{\circ}$) and twenty six $Tl^+$ ions occupy site II opposite single six-rings in the supercage; each is 1.493 $\AA$ from the plane of three oxygens $(Tl-O=2.70(8)\AA$ and O-Tl-O=92.33(4)$^{\circ}$). About four $Tl^+$ ions are found at site II',1.695 $\AA$ into sodalite cavity from their three oxygen plane (Tl-O=2.81 (1) and O-Tl-O=87.48(3)). The remaining twenty six $Tl^+$ ions are distributed over site III'(Tl-O=2.82 (1) $\AA$ and Tl-O=2.88(3)$^{\circ}$). In the structure of $Ca_{32}Tl_{28}$-X, sixteen $Ca^{2+}$ ions and fifteen $Tl^+$ ions occupy site III' (Ca-O=2.26(1) $\AA$ and O-Ca-O=119.14(4)$^{\circ}$; Tl-O=2.70(1) $\AA$ and O-Tl-O=92.38$^{\circ}$) and one $Tl^+$ ion occupies site II'. The remaining twelve $Tl^+$ ions are distributed over site III'. It appears that $Ca^{2+}$ ions prefer sites I and II in that order and $Tl^+$ ions occupy the remaining sites.

  • PDF

Site Competition of Ca2+ and Cs+ Ions in the Framework of Zeolite Y (Si/Al = 1.56) and Their Crystallographic Studies (제올라이트 Y (Si/Al = 1.56) 골격 내의 Ca2+과 Cs+ 이온의 자리 경쟁 및 그들의 결정학적 연구)

  • Kim, Hu Sik;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • The present work was performed in order to study the effect of competing cation of $Ca^{2+}$ ion on ion exchange of $Cs^+$ on zeolite Y (Si/Al = 1.56). Three single-crystals of fully dehydrated and partially $Cs^+$-exchanged zeolites Y (Si/Al = 1.56) were prepared by the flow method using mixed ion-exchange solutions. The $CsNO_3:Ca(NO_3)_2$ molar ratios of the ion exchange solution were 1 : 1 (crystal 1), 1 : 100 (crystal 2), and 1 : 250 (crystal 3) with a total concentration of 0.05 M. The single-crystals were then vacuum dehydrated at 723 K and $1{\times}10^{-4}Pa$ for 2 days. The structures of the crystals were determined by single-crystal synchrotron X-ray diffraction technique in the cubic space group $Fd{\bar{3}}m$, at 100(1) K. The unit-cell formulas of crystals 1, 2, and 3 were ${\mid}Cs_{21}Ca_{27}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, ${\mid}Cs_2Ca_{36.5}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, and ${\mid}Cs_1Ca_{37}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, respectively. In all three crystals, the $Ca^{2+}$ ions preferred to occupy site I in the D6Rs, with the remainder occupying sites I', II', and II. On the other hand, the significant differences in the fractional distribution of $Cs^+$ ions are observed depending on the intial $Cs^+$ concentrations in given ion exchange solution. In Crystal 1, $Cs^+$ ion are located at sites II', II, III, and III', and in crystal 2, at sites II, IIIa, and IIIb. In crystal 3, $Cs^+$ ions are only located at sites IIIa and IIIb. The degree of $Cs^+$ ion exchange decreased sharply from 28.0 to 2.7 to 1.3 % as the initial $Ca^{2+}$ concentration increases and the $Cs^+$ content decreases.

Alq$_3$-based organic light-emitting devices with Al/fluoride cathode; Performance enhancement and interface electronic structures

  • Park, Y.;Lee, J.;Kim, D.Y.;Chu, H.Y.;Lee, H.;Do, L.M.;Zyung, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.105-107
    • /
    • 2002
  • The device characteristics and the interface electronic structures of organic light-emitting devices based on tris-(8-hydroxyquinoline)aluminum were investigated with $Al/CaF_2$, Al/LiF, and Al-only cathodes. Similar to the Al/LiF cathode, the $Al/CaF_2$ cathode greatly improved the performance of the device over Al-only cathode. However, a photoelectron spectroscopy study revealed that despite the performance improvement, the evolution of the new peaks during $Al/CaF_2$ cathode formation closely resembled those of the Al-only cathode rather than the Al/LiF cathode.

  • PDF

Synthesis and stability relations of zoisite $Ca_2$Al$_3$Si$_3$O$_{12}$(OH) at 2-4 kbar (조이사이트 $Ca_2$Al$_3$Si$_3$O$_{12}$(OH)의 합성 및 2-4 kbar에서의 안정관계)

  • Kim Hyung Shik;Park Chan Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 1992
  • The equilibrium pressure-temperature curve of the reaction: 6 Ca$_2$Al$_3$(OH)Si$_3$O$_{12}$=6 CaAl$_2$Si$_2$O$_{8}$+2 Ca$_3$Al$_2$Si$_3$O$_{12}$+Al$_2$O$_3$+3 H$_2$O zoisite anorthite grossularite corundum was experimentally determined using both externally and internally heated pressure vessels in the pressure range of 2-4 kbar. Synthetic zoisite, anorthite, grossularite and corundum were used as starting materials. Starting materials were synthesized at 13-16 kbar using the piston-cylinder apparatus. The dehydration temperature of zoisite at 2 kbar is 550${\pm}$12$^{\circ}C$ and at 4 kbar is 575${\pm}$20$^{\circ}C$. Low thermal stability of synthetic zoisite relative to natural zoisite at 4 kbar is attributed to the structural disorder of synthetic anorthite.

  • PDF

A Study on the Forming of Solid Solution in CaO.MgO.$2SiO_2-Al_2O_3$ System (CaO MgO.$2SiO_2-Al_2O_3$ 계의 고용체 생성에 관한 연구)

  • 안영필;김복희
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 1983
  • This experiment was studied in the system of (1-x) CaO MgO $2SiO-Al_2O_3$ to investigate forming of solid solution. The technique empolyed was the well known water-quenching method. Differential thermal analysis of the each glass water quenched indicated that under 30 mole% $Al_2O_3$ was lowered with increasing of the amount of $Al_2O_3$ It was supposed by X-ray diffraction patterns of each specimen sintered at various temperature that only solid solution was formed under the 30mole % $Al_2O_3$ compositions solid solution and anorthite were formed at the 20mole% $Al_2O_3$ composition anorthite solid solution and spinel$(MgAl_2O_4)$ were formed over the 40mole% $Al_2O_3$ compositions. The maximum density and thermal expanison coefficient was 2.89g/cm 7.74x106./C$^{\circ}$ respectively in the composi-tion of 10 mole% $Al_2O_3$ . All the specimens showed linear thermal expansion behavior. Microhardness was as high as 850kg/nm2 in the composition of 5, 10, 20 mole % $Al_2O_3$ and dielectric constant was 7.3-6.9.

  • PDF

A Study on the Development of Refractories for the Iron , Steel and Cement Manufacturing (제철, 제강 및 시멘트 제조용 내화물의 개발에 관한 연구)

  • 김병호;변재동
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.96-100
    • /
    • 1980
  • The castable refractory, CaO.$2Al_2O_3$ is a useful alumina cement for iron, steel and cement for iron, steel and cement industries, however it is difficult to produce CaO.$2Al_2O_3$because of its high melting point(180$0^{\circ}C$) and narrow firing range. In this study, the coprecipitation method was used to produce CaO.$2Al_2O_3$ for lower temperature firing . This method involved the titration of mixed solution of calicum and aluminate which extracted from domestic kaolin with $NH4_OH$ solution under blowing $CO_2$ gas into the solution. The coprecipitate and its clacined products were analyzed by X-ray diffraction and DTA. The calcined products fired between 400 and 90$0^{\circ}C$ were amorphous, but at 100$0^{\circ}C$ the coprecipitate was converted into one compound, CaO$2Al_2O_3$. From those experimental results, it was found that we could synthesizze CaO.$2Al_2O_3$ at about 100$0^{\circ}C$ which is lower than conventional firing temperature by around 80$0^{\circ}C$. The refractoriness of this alumina cement was SK 34 and the compressive strength ( 1 day) was about 250kg/$\textrm{cm}^2$.

  • PDF

Biosorption of Cr, Cu and Al by Sargassum Biomass

  • Lee, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1997
  • The biosorption and desorption of Cr, Cu and Al were carried out using brown marine algae Sargassum fluitans biomass, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by physical and chemical pretreatment. The maximum uptake of Cr, Cu and Al was independent of the alginate content. The maximum uptaker of Al was two times(mole basis) than those of Cu and Cr. The aluminum-alginate complex was found in the sorption solution of raw and protonated biomass. Most of Cu, Al and light metals sorbed in the biomass were eluted at pH 1.1. However, only 5 to 10% of Cr sorbed was eluted at pH 1.1. The stoiceometric ion exchange between Cu and Ca ion was observed on Cu biosorption with Ca-loaded biomass. A part of Cr ion was bound to biomass as Cr(OH)2+ or Cr(OH)2+. Al was also bound to biomass as multi-valence ion and interfered with the desorbed Ca ion. The behavior of raw S. fluitans in ten consecutive sorption-desorption cycles has been investigated in a packed bed flow-through-column during a continuous removal of copper from a 35 mg/L aqueous solution at pH 5. The eluant used was a 1%(w/v) CaCl2/HC solution at pH 3.

  • PDF