• 제목/요약/키워드: $Al/Al_2O_3$ composite

검색결과 570건 처리시간 0.024초

SHS법에 의한 $Al_2O_3-SiC$ 복합분말의 합성 (Preparation of $Al_2O_3-SiC$ Composite Powder by SHS Method)

  • 이형민;이홍림;이형직
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.11-16
    • /
    • 1995
  • High reaction heat evolved from the oxidation of Al was used to synthesize SiC, which might be difficult to be formed by SHS. Al2O3-SiC composite powder was easily manufactured using KNO3 as an ignition and reaction catalyst. Unreacted Si and C were observed after reaction dependent upon the composition of starting powders, reaction atmosphere and relative densities of compacted bodies. The unreacted carbon could be removed by calcining at $600^{\circ}C$ and the remaining Si could be removed by dissolving in NaOH solution. The final powder particles were smaller than 1${\mu}{\textrm}{m}$ in size.

  • PDF

습식법에 의한 Al2O3-TiO2 복합체의 합성 및 특성연구 I. Al2O3-TiO2 복합체의 기계적 특성(2) (Study on Properties of Al2O3-TiO2 Composites by Wet Method I. Mechanical Properties of Al2O3-TiO2 Composites(2))

  • 류수착
    • 한국세라믹학회지
    • /
    • 제39권2호
    • /
    • pp.153-158
    • /
    • 2002
  • 습식법에 의하여 제조된 $Al_2O_3$-1∼11 wt% $TiO_2$계 복합체를 1350$^{\circ}C$, 1450$^{\circ}C$ 에서 2시간 열처리 한 후 이에 대한 기계적 물성변화 및 미세구조를 조사하였다. 그 결과, $TiO_2$ 첨가량이 3 wt%였을 때의 복합체가 bulk density도 높고 기공율도 낮은 치밀한 미세구조를 이루었으며 이 때 young's modulus는 35.5 GPa, 곡강도값은 68.7 MPa로서 다른 $TiO_2$ 첨가량에 비하여 우수한 물성을 나타내었다. $TiO_2$ 첨가량이 증가할 수록 많은 양의 aluminium titanate의 합성으로 인해 열팽창 계수는 낮은 값을 나타내었다.

극미세 입자 Aluminosilicate계 졸의 합성 및 응용 (II) Al_2O_3-SiO_2$계 혼합졸 (Synthesis and Application of Nanoparticulate Aluminosilicate Sols (II) Mixed Al_2O_3-SiO_2$ Sols)

  • 현상훈;김승구;이성철
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.63-70
    • /
    • 1995
  • A crack-free ceramic composite membrane with micropores has been synthesized by the pressurized sol-gel coating technique using the mixed Al2O3-SiO2 sols. The mixed sols were prepared by mixing nanoparticulate SiO2 and boehmite sols. These sols were more stable at lower pH, but very unstable when their copositions were in the range of 50~75mol% of SiO2 at the same pH. The mixed Al2O3-SiO2 membrane prepared from the mixed sol (0.2mol/$\ell$ of solid content and pH=2) containing 40mol% of SiO2 had the mean pore radius of 0.80nm and the specific surface area of 280$m^2$/g. The nitrogen permeability through the coated Al2O3-SiO2 layer was 42$\times$107mol/$m^2$.s.Pa. It was found that the thermal stability of aluminosilicate membranes, even through similar to that of SiO2 membranes, was much improved in comparison with ${\gamma}$-alumina membranes.

  • PDF

고주파유도가열 연소합성에 의한 4.25 Co0.53Fe0.47-Al2O3 복합재료 제조 (Fabrication of 4.25 Co0.53Fe0.47-Al2O3 Composite by High Frequency Induction Heated Combustion Synthesis)

  • 박나라;남궁훈;고인용;손인진
    • 한국분말재료학회지
    • /
    • 제16권2호
    • /
    • pp.91-97
    • /
    • 2009
  • Nanopowders of $Co_3O_4$ and FeAl were fabricated by high energy ball milling. Dense 4.25 $Co_{0.53}Fe_{0.47}-Al_2O_3$ composite was simultaneously synthesized and consolidated by high frequency induction heated combustion method within 2 min from mechanically activated powders. Consolidation was accomplished under the combined effects of a induced current and mechanical pressure of 80 MPa.

반응결합에 의해 제조된 ZTA복합체의 기계적 특성 (Mechanical Properties of ZTA Composites Fabricated by Reaction Bonding)

  • 장복기;백용혁;문종하;이종호
    • 한국세라믹학회지
    • /
    • 제34권6호
    • /
    • pp.577-582
    • /
    • 1997
  • The mechanical properties of Al2O3-ZrO2 composites fabricated by RBAO(reaction bonded aluminium oxide) process were investigated. As the amount of ZrO2 increased the sinstered density of Al2O3-ZrO2 composites decreased slightly, but wear resistance was enhanced. Bending strength of Al2O3-ZrO2 composites increased in proportion to the amount of al in case of a fixed ZrO2 content. When the amount of Al was fixed bending strength reached its maximum value at 25 wt% ZrO2. The fracture toughness(K1c) increased with increasing content of ZrO2, but decreased with increasing Al amount. On the other hand, the fracture mode of Al2O3-ZrO2 composites was the mixed mode of inter-and transgranular fracture.

  • PDF

Platelet 강화 Mullite-Zirconia 복합체의 미세구조와 기계적 성질 (Microstructure and Mechanical Properties of Platelet Reinforced Mullite-Zirconia Composites)

  • 박상엽
    • 한국세라믹학회지
    • /
    • 제29권10호
    • /
    • pp.757-764
    • /
    • 1992
  • The platelet reinforced mullite-zirconia composites were prepared by pressurelss sintering with addition of Al2O3 or SiC platelets. The sintered density of 10 vol% Al2O3 platelet reinforced mullite-zirconia composite was 98.3% at 1700$^{\circ}C$. The fracture strength (290 MPa) and fracture toughness (4.9 MPa$.${{{{ SQRT { m} }}) in the Al2O3 platelet reinforced mullite-zirconia composite were enhanced compared with those of mullite-zirconia due to the crack deflection and load transfer effect of platelets. Whereas, the SiC platelet reinforced mullite-zirconia composite sintered at 1650$^{\circ}C$ showed relatively lower density (95.7%), fracture strength (170 MPa), and fracture toughness (3.9 MPa$.${{{{ SQRT { m} }} than the Al2O3 platelet reinforced mullite-zirconia composite.

  • PDF