• 제목/요약/키워드: $A_3$ adenosine receptor

Search Result 145, Processing Time 0.037 seconds

The Role of Adenosine Receptor on Acetylcholine Release from Ischemic-Induced Rat Hippocampus (허혈이 유발된 흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 수용체의 역할)

  • Choi, Bong-Kyu;Kim, Do-Kyung;Kang, Hun;Jeon, Jae-Min;Kang, Yeon-Wook
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The effects of adenosine analogues on the electrically-evoked acetylcholine(ACh) release and the influence of ischemia on the effects were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $0.1{\mu}M$ $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3 Hz, 2 ms, 5 $VCm^{-1}$ and rectangular pulses for 2 min), and the influence of various agents on the evoked tritiumoutflow was investigated. Ischemia(10 min with 95% $N_2$ + 5% $CO_2$) increased both the basal and evoked ACh release. These increases were abolished by glucose addition into the superfused medium, and they significantly inhibited either by 0.1 & $0.3{\mu}M$ TTX pretreatment or by removing $Ca^{++}$ in the medium. MK-801($1{\sim}10{\mu}M$), a specific NMDA receptor antagonist, and glibenclamide $(1{\mu}M)$, a $K^+-channel$ inhibitor, did not alter the evoked ACh release and nor did they affect the ischemia-induced increases In ACh release. However, polymyxin B(0.03 mg), a specific protein kinase C inhibitor, significantly inhibited the effects of ischemia on the evoked ACh release. Adenosine and $N^6-cyclopentyladenosine$ decreased the ACh release in a dose dependent manner in ischemic condition, though the magnitude of inhibition was far less than those in normal(normoxic) condition. However, the treatment with $5{\mu}M$ DPCPX, a potent $A_1-adenosine$ receptor antagonist, potentiated the ischemia-effect. These results indicate that the evoked-ACh release is potentiated by ischemia, and this process being most probably mediated by protein kinase C, and that the decreased effect of ACh release mediated by $A_1-adenosine$ receptor is significantly inhibited in ischemic state.

  • PDF

A2B Adenosine Receptor Stimulation Down-regulates M-CSF-mediated Osteoclast Proliferation

  • Oh, Yoon Taek;Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.194-200
    • /
    • 2017
  • Bone-resorbing osteoclasts play a major role in maintaining bone homeostasis with bone-forming osteoblasts. Although it has been reported that A2B adenosine receptor (A2BAR) regulates osteoclast differentiation, its effects on apoptosis or proliferation of osteoclasts have been less-defined. Here, we demonstrate that A2BAR stimulation regulates macrophage-colony stimulating factor (M-CSF)-mediated osteoclast proliferation. Stimulation with a specific agonist of A2BAR, BAY 60-6583, significantly reduced M-CSF-mediated osteoclast proliferation in a time- and dose-dependent manner. In addition, A2BAR stimulation induced both apoptosis of the cells and cell arrest in the G1 phase with a decrease of cell number in the G2/M phase. Stimulation with BAY 60-6583 inhibited the activation of Akt by M-CSF, whereas M-CSF-induced ERK1/2 activation was not affected. These results suggest that the inhibition of M-CSF-mediated Akt activation by A2BAR stimulation increases apoptotic response of osteoclasts and induces cell cycle arrest in the G1 phase, thus contributing to the down-regulation of osteoclast proliferation.

Effect of Various Receptor Blockers on the Action of Adenosine Triphosphate on Uterine Smooth Muscle Motility in Immature Pig (미성숙 돼지 자궁 평활근의 운동성에 대한 Adenosine Triphosphate의 작용에 있어서 수종의 Receptor 차단제의 영향)

  • Kim, Joo-heon;Kwun, Jong-kuk;Kim, Yong-keun
    • Korean Journal of Veterinary Research
    • /
    • v.27 no.2
    • /
    • pp.201-206
    • /
    • 1987
  • This study was carried out to investigate the action of ATP, which has been known as the neurotransmitter of noncholinergic- and nonadrenergic-nerve, on the motility of immature pig uterine smooth muscle. The results were summarized as follows; 1. The contraction and the contractile responses caused by ATP were increased in a dose-dependent manner between the concentration of ATP $10^{-6}M$ and $10^{-3}M$. The maximal contractile effect was appeared at the concentration of ATP $10^{-3}M$ and it was 70.2% of 100mM K contraction. 2. The contractile responses induced by ATP ($10^{-4}M$) were not blocked by the pretreatment with cholinergic receptor blocker, atropine ($10^{-6}M$). 3. The contractile responses induced by ATP ($10^{-4}M$) were not blocked by pretreatment with ${\alpha}$-adrenergic receptor blocker, phentolamine ($10^{-6}M$) and ${\beta}$-adrenergic receptor blocker, propranolol ($10^{-6}M$). 4. The contractile response induced by ATP ($10^{-4}M$) was not blocked by the pretreatment with $H_1-receptor$ blocker, pyrilamine ($10^{-6}M$) and $H_2-receptor$ blocker, cimetidine ($10^{-6}M$).

  • PDF

Effect of Protein Kinase C on Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 Protein Kinase C 의 영향)

  • Kim, Do-Kyung;Lee, Young-Soo;Choi, Bong-Kyu
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • The effects and interactions of $4{\beta}-phorbol$ 12,13-dibutyrate(PDB) and polymyxin B(PMB) with adenosine on the electrically-evoked norepinephrine (NE) release were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $^3H-noradrenaline$ and the release of the labelled product, $^3H-NE$, which evoked by electrical stimulation$(3\;Hz,\;2\;ms,\;5\;VCm^{-1},\;rectangular\;pulses)$ was measured. PDB$(0.3{\sim}10\;{\mu}M)$, a selective protein kinase C(PKC) activator, increased the evoked NE release in a dose related fashion while increasing the basal rate of release. And the effects of $1\;{\mu}M$ PDB were significantly inhibited by $0.3\;{\mu}M$ tetrodotoxin(TTX) pretreatment or $Ca^{++}-free$ medium. $PMB(0.03{\sim}1\;mg)$, a specific PKC inhibitor, decreased the NE release in a dose dependent manner while increasing the basal rate of release. Adenosine $(1{\sim}10\;{\mu}M)$ decreased the NE release without changing the basal rate of release, and this effect was significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine$(2\;{\mu}M)$, a selective $A_1-receptor$ antagonist, treatment. Also, adenosine effects were significantly inhibited by PDB-and PMB-pretreatment. These results suggest that the PKC plays a role in the NE release in the rat hippocampus and might be participated in a post-receptor mechanism of the $A_1-adenosine$ receptor.

  • PDF

Effect of $K^+-channel$ Blockers on the Muscarinic- and $A_1-adenosine-Receptor$ Coupled Regulation of Electrically Evoked Acetylcholine Release in the Rat Hippocampus

  • Yu, Byung-Sik;Kim, Do-Kyung;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1998
  • It was attempted to clarify the participation of $K^+-channels$ in the post-receptor mechanisms of the muscarinic and $A_1-adenosine$ receptor- mediated control of acetylcholine (ACh) release in the present study. Slices from the rat hippocampus were equilibrated with $[^3H]$choline and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 V/cm, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Oxotremorine (Oxo, $0.1{\sim}10\;{\mu}M$), a muscarinic agonist, and $N^6-cyclopentyladenosine$ (CPA, $1{\sim}30\;{\mu}M$), a specific $A_1-adenosine$ agonist, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. 4-aminopyridine (4AP), a specific A-type $K^+-channel$ blocker ($1{\sim}100\;{\mu}M$), increased the evoked ACh release in a dose-related fashion, and the basal rate of release is increased by 3 and $100\;{\mu}M$. Tetraethylammonium (TEA), a non-specific $K^+-channel$ blocker ($0.1{\sim}10\;{\mu}M$), increased the evoked ACh release in a dose-dependent manner without affecting the basal release. The effects of Oxo and CPA were not affected by $3\;{\mu}M$ 4AP co-treatment, but 10 mM TEA significantly inhibited the effects of Oxo and CPA. 4AP ($10\;{\mu}M$)- and TEA (10 mM)-induced increments of evoked ACh release were completely abolished in Ca^{2+}-free$ medium, but these were recoverd in low Ca^{2+}$ medium. And the effects of $K^+-channel$ blockers in low Ca^{2+}$ medium were inhibited by $Mg^{2+}$ (4 mM) and abolished by $0.3\;{\mu}M$ tetrodotoxin (TTX). These results suggest that the changes in TEA-sensitive potassium channel permeability and the consequent limitation of Ca^{2+}$ influx are partly involved in the presynaptic modulation of the evoked ACh-release by muscarinic and $A_1-adenosine$ receptors of the rat hippocampus.

  • PDF

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

β-Lapachone Exerts Hypnotic Effects via Adenosine A1 Receptor in Mice

  • Do Hyun Lee;Hye Jin Jee;Yi-Sook Jung
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.531-539
    • /
    • 2024
  • Sleep is one of the most essential physiological phenomena for maintaining health. Sleep disturbances, such as insomnia, are often accompanied by psychiatric or physical conditions such as impaired attention, anxiety, and stress. Medication used to treat insomnia have concerns about potential side effects with long-term use, so interest in the use of alternative medicine is increasing. In this study, we investigated the hypnotic effects of β-lapachone (β-Lap), a natural naphthoquinone compound, using pentobarbital-induced sleep test, immunohistochemistry, real-time PCR, and western blot in mice. Our results indicated that β-Lap exerts a significant hypnotic effect by showing a decrease in sleep onset latency and an increase in total sleep time in pentobarbital-induced sleep model. The results of c-Fos immunostaining showed that β-Lap decreased neuronal activity in the basal forebrain and lateral hypothalamus, which are wakefulness-promoting brain regions, while increasing in the ventrolateral preoptic nucleus, a sleep-promoting region; all these effects were significantly abolished by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an adenosine A1 receptor (A1R) antagonist. Western blot analysis showed that β-Lap increased extracellular signal-regulated kinase phosphorylation and nuclear factor-kappa B translocation from the cytoplasm to the nucleus; these effects were inhibited by DPCPX. Additionally, β-Lap increased the mRNA levels of A1R. Taken together, these results suggest that β-Lap exerts hypnotic effects, potentially through A1R.

Influence of Adenosine and Magnesium on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 및 Magnesium의 영향)

  • Choi, Bong-Kyu;Yoon, Young-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.175-182
    • /
    • 1993
  • As it has been reported that the depolarization-induced ACh release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the adenosine effect is magnesium dependent, the present study was undertaken to delineate the role of endogenus adenosine as a modulator of hippocampal acetylcholine release in this study. Slices from the rat hippocampus were equilibrated with $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3Hz, $5\;V\;cm^{-1},$ 2ms, rectangular pulses), and the influence of various agents on the evoked tritium outflow was investigated. Adenosine, in concentrations ranging from $0.3\;to\;100\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without changing the basal rate of release. $DPCPX(1{\sim}10{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium release. And the effects of adenosine were significantly inhibited by $DPCPX(2{\mu}M)$ treatment. CPCA, a specific $A_2-agonist$, in concentration ranging from $0.3\;to\;30\;{\mu}M$ decreased evoked tritium outflow with increase of basal rate of tritium release, and these effects were also abolished by $DPCPX(2{\mu}M)$ pretreatment. But, $CGS(0.1{\sim}10{\mu}M)$, a recently introduced potent $A_2-agonist$, did not alter the evoked tritium outflow. When the magnesium concentration of the medium was reduced to 0 mM, there was no change in evoked ACh release by adenosine. In contrast, increasing the magnesium concentration to 4 mM, the inhibitory effects of adenosine were significantly potentiated. These results indicate that $A_1-adenosine$ heteroreceptor is involved in ACh-release in the rat hippocampus and the inhibitory effects of adenosine mediated by $A_1-receptor$ is magnesium-dependent.

  • PDF

cAMP-Dependent Signalling is Involved in Adenosine-Stimulated $Cl^-$ Secretion in Rabbit Colon Mucosa

  • Oh, Sae-Ock;Kim, Eui-Yong;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.521-527
    • /
    • 1998
  • An important property of the intestine is the ability to secrete fluid. The intestinal secretion is regulated by a number of substances including vasoactive intestinal peptide (VIP), ATP and different inflammatory mediators. One of the most important secretagogues is adenosine during inflammation. However, the controversy concerning the underlying mechanism of adenosine-stimulated $Cl^-$ secretion in intestinal epithelial cells still continues. To investigate the effect of adenosine on $Cl^-$ secretion and its underlying mechanism in the rabbit colon mucosa, we measured short circuit current ($I_{SC}$) under automatic voltage clamp with DVC-1000 in a modified Ussing chamber. Adenosine, when added to the basolateral side of the muocsa, increased $I_{SC}$ in a dose-dependent manner. The adenosine-stimulated $I_{SC}$ response was abolished when $Cl^-$ in the bath solution was replaced completely with gluconate. In addition, the $I_{SC}$ response was inhibited by a basolateral Na-K-Cl cotransporter blocker, bumetanide, and by apical $Cl^-$ channel blockers, dephenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), glibenclamide. Amiloride, an epithelial $Na^+$ channel blocker, and 4,4-diisothiocyanato-stilbene-2,2-disulphonate (DIDS), a $Ca^{2+}-activated$ $Cl^-$ channel blocker, had no effect. In the mucosa pre-stimulated with forskolin, adenosine did not show any additive effect, whereas carbachol resulted in a synergistic potentiation of the $I_{SC}$ response. The adenosine response was inhibited by 10 ${\mu}M$ H-89, an inhibitor of protein kinase A. These results suggest that the adenosine-stimulated $I_{SC}$ response is mediated by basolateral to apical $Cl^-$ secretion through a cAMP-dependent $Cl^-$ channel. The rank order of potencies of adenosine receptor agonists was $5'-(N-ethylcarboxamino)adenosine(NECA)>N^6-(R-phenylisopropyl)adenosine(R-$ PIA)>2-[p-(2-carbonylethyl)-phenyl-ethylamino]-5'-N-ethylcarboxaminoadenosine(CGS21680). From the above results, it can be concluded that adenosine interacts with the $A_{2b}$ adenosine receptor in the rabbit colon mucosa and a cAMP-dependent signalling mechanism underlies the stimulation of $Cl^-$ secretion.

  • PDF