• Title/Summary/Keyword: $ABCG_2$

Search Result 21, Processing Time 0.022 seconds

Glucosamine increases macrophage lipid accumulation by regulating the mammalian target of rapamycin signaling pathway

  • Sang-Min Kim;Dong Yeol Kim;Jiwon Park;Young-Ah Moon;Inn-Oc Han
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells. Oleic acid- and lipopolysaccharide (LPS)-induced lipid accumulation was further enhanced by GlcN in RAW264.7 cells, although there was no a significant change in the rate of fatty acid uptake. GlcN increased acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), scavenger receptor class A, liver X receptor, and sterol regulatory element-binding protein-1c (SREBP-1c) mRNA expression, and; conversely, suppressed ATP-binding cassette transporter A1 (ABCA-1) and ABCG-1 expression. Additionally, GlcN promoted O-GlcNAcylation of nuclear SREBP-1 but did not affect its DNA binding activity. GlcN stimulated phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Rapamycin, a mTOR-specific inhibitor, suppressed GlcN-induced lipid accumulation in RAW264.7 cells. The GlcN-mediated increase in ACC and FAS mRNA was suppressed, while the decrease in ABCA-1 and ABCG-1 by GlcN was not significantly altered by rapamycin. Together, our results highlight the importance of the mTOR signaling pathway in GlcN-induced macrophage lipid accumulation and further support a potential link between mTOR and HBP signaling in lipogenesis.

Increased Expression of P2RY2, CD248 and EphB1 in Gastric Cancers from Chilean Patients

  • Aquea, Gisela;Bresky, Gustavo;Lancellotti, Domingo;Madariaga, Juan Andres;Zaffiri, Vittorio;Urzua, Ulises;Haberle, Sergio;Bernal, Giuliano
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.1931-1936
    • /
    • 2014
  • Background: Gastric cancer (GC) ranks as one of the major causes of mortality due to cancer worldwide. In Chile, it is currently the leading cause of cancer death. Identification of novel molecular markers that may help to improve disease diagnosis at early stages is imperative. Materials and Methods: Using whole-genome DNA microarrays we determined differential mRNA levels in fresh human GC samples compared to adjacent healthy mucosa from the same patients. Genes significantly overexpressed in GC were validated by RT-PCR in a group of 14 GC cases. Results: The genes CD248, NSD1, RAB17, ABCG8, Ephb1 and P2RY2 were detected as the top overexpressed in GC biopsies. P2RY2, Ephb1 and CD248 showed the best sensitivity for GC detection with values of 92.9%, 85.7% and 64.3% (p<0.05), respectively. Specificity was 85.7%, 71.4% and 71.4% (p<0.05), for each respectively.

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.

Beakdugu-tang, Traditional Korean Digestant Medicine, Inhibits Hepatic Steatosis in Insulin Resistance Cell Model with HepG2 and THP-1

  • Kim, Hyuck;Lim, Dong-Woo;Park, Sung Yun;Park, Sun-Dong;Park, Won-Hwan;Kim, Jai-Eun
    • The Journal of Korean Medicine
    • /
    • v.38 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • Objectives: Beakdugu-tang (BDGT) consists of three medicinal herbs, and this prescription has long been used in treatment of various digestant problem in Korea. In this study, we designed to clarify mechanisms by which Korean traditional digestive medicine, BDGT, may exert anti-hepatic steatosis effects via improved insulin resistance cell model in human hepatocellular carcinoma (HepG2) and monocyte (THP-1). Materials and methods: The preparation of BDGT and constituents were extracted with 70% ethanol. HepG2 and THP-1 were treated with different concentrations of BDGT and constituents in the presence and absence of stimulants such as free fatty acids (FFAs) and oxidized low-density lipoprotein (ox-LDL), respectively. Results: The BDGT and its constituents inhibited the FFAs-stimulated lipid accumulation in HepG2 cells. Ethanol extracts of Amomum cardamomum (ACE) improved the ox-LDL induced insulin resistance in THP-1 cells. Also, treatment of monocytic cells with ACE increased anti-hepatic steatosis related gene levels including ABCA, ABCG and SR-B1. Conclusion: The results suggest that the ethanol extract of BDGT and its constituents potently inhibit the FFAs- and ox-LDL induced liver steatosis via improved insulin resistance.

Molecular Prognostic Profile of Egyptian HCC Cases Infected with Hepatitis C Virus

  • Zekri, Abdel-Rahman N.;Hassan, Zeinab K.;Bahnassy, Abeer A.;Sherif, Ghada M.;ELdahshan, Dina;Abouelhoda, Mohamed;Ali, Ahmed;Hafez, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5433-5438
    • /
    • 2012
  • Background: Hepatocellular carcinoma (HCC) is a common and aggressive malignancy. Despite of the improvements in its treatment, HCC prognosis remains poor due to its recurrence after resection. This study provides complete genetic profile for Egyptian HCC. Genome-wide analyses were performed to identify the predictive signatures. Patients and Methods: Liver tissue was collected from 31 patients with diagnosis of HCC and gene expression levels in the tumours and their adjacent non-neoplastic tissues samples were studied by analyzing changes by microarray then correlate these with the clinico-pathological parameters. Genes were validated in an independent set by qPCR. The genomic profile was associated with genetic disorders and cancer focused on gene expression, cell cycle and cell death. Molecular profile analysis revealed cell cycle progression and arrest at G2/M, but progression to mitosis; unregulated DNA damage check-points, and apoptosis. Result: Nine hundred fifty eight transcripts out of the 25,000 studied cDNAs were differentially expressed; 503 were up-regulated and 455 were down-regulated. A total of 19 pathways were up-regulated through 27 genes and 13 pathways were down-regulated through 19 genes. Thirty-seven genes showed significant differences in their expression between HCC cases with high and low Alpha Feto Protein ($AFP{\geq}600$ IU/ml). The validation for the microarray was done by real time PCR assay in which PPP3CA, ATG-5, BACE genes showed down-regulation and ABCG2, RXRA, ELOVL2, CXR3 genes showed up-regulation. cDNA microarrays showed that among the major upregulated genes in HCC are sets. Conclusion: The identified genes could provide a panel of new diagnostic and prognostic aids for HCC.

Current Pharmacogenetic Approach for Oxaliplatin-induced Peripheral Neuropathy among Patients with Colorectal Cancer: A Systematic Review (대장암 환자의 옥살리플라틴(oxaliplatin) 유도 말초신경병증에 대한 약물유전학적 접근: 체계적 문헌고찰)

  • Ahn, Soojung;Choi, Soyoung;Jung, Hye Jeong;Chu, Sang Hui
    • Journal of Korean Biological Nursing Science
    • /
    • v.20 no.2
    • /
    • pp.55-66
    • /
    • 2018
  • Purpose: Peripheral neuropathy is common among colorectal cancer (CRC) patients who undergo oxaliplatin-based (OXL) chemotherapy. A pharmacogenetic approach can be used to identify patients at high-risk of developing severe neuropathy. This type of approach can also help clinicians determine the best treatment option and prevent severe neurotoxicity. The purpose of this study is to investigate the evidence of pharmacogenetic markers for OXL-induced peripheral neuropathy (OXIPN) in patients with CRC. Methods: A systematic literature search was conducted using the following databases up to December 2017: Pubmed, EMBASE, and CINAHL. We reviewed the genetic risk factors for OXIPN in observational studies and randomized controlled clinical trials (RCTs). All processes were performed independently by two reviewers. Results: Sixteen studies published in English between 2006 and 2017 were included in this review. A genome-wide association approach was used in one study and various candidate genes were tested, based on their functions (e.g., DNA damage or repair, ion channels, anti-oxidants, and nerve growth etc.). The genes associated with incidence or severity of OXIPN were ABCG2, GSTP1, XRCC1, TAC1, and ERCC1. Conclusion: This study highlighted the need and the importance of conducting pharmacogenetic studies to generate evidence of personalized OXIPN symptoms management. Additional studies are warranted to accelerate the tailored interventions used for OXIPN in patients with CRC (NRF-2014R1A1A3054386).

Effect of dietary protamine on lipid metabolism in ruts

  • Hosomi, Ryota;Fukunaga, Kenji;Arai, Hirofumi;Kanda, Seiji;Nishiyama, Toshimasa;Yoshida, Munehiro
    • Nutrition Research and Practice
    • /
    • v.4 no.6
    • /
    • pp.462-469
    • /
    • 2010
  • Protamine has been widely used as a pharmaceutical product and natural food preservative. However, few studies have been conducted to assess the beneficial function of dietary protamine. This study examined the effects of dietary salmon protamine on serum and liver lipid levels and the expression levels of genes encoding proteins involved in lipid homeostasis in the liver of rats. Groups of male Wistar rats were fed AIN93G diet containing 2% or 5% protamine. After 4 weeks of feeding these diets, markedly decreased serum and liver cholesterol (CHOL) and triacylglycerol levels were noted. Increased activity of liver carnitine palmitoyltransferase-2 and acyl-CoA oxidase, which are key enzymes of fatty acid ${\beta}$-oxidation in the mitochondria and peroxisomes, was found in rats fed on protamine. Furthermore, rats fed protamine showed enhanced fecal excretion of CHOL and bile acid and increased liver mRNA expression levels of ATP-binding cassette (ABC) G5 and ABCG8, which form heterodimers and play a major role in the secretion of CHOL into bile. The decrease in triacylglycerol levels in protamine-fed rats was due to the enhancement of liver ${\beta}$-oxidation. Furthermore, rats fed protamine exhibited decreased CHOL levels through the suppression of CHOL and bile acid absorption and the enhancement of CHOL secretion into bile. These results suggest that dietary protamine has beneficial effects that may aid in the prevention of lifestyle-related diseases such as hyperlipidemia and atherosclerosis.

LncRNA MEG3 Regulates Imatinib Resistance in Chronic Myeloid Leukemia via Suppressing MicroRNA-21

  • Zhou, Xiangyu;Yuan, Ping;Liu, Qi;Liu, Zhiqiang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.490-496
    • /
    • 2017
  • Imatinib resistance has become a major clinical problem for chronic myeloid leukemia. The aim of the present study was to investigate the involvement of MEG3, a lncRNA, in imatinib resistance and demonstrate its underlying mechanisms. RNAs were extracted from CML patients' peripheral blood cells and human leukemic K562 cells, and the expression of MEG3 was measured by RT-qPCR. Cell proliferation and cell apoptosis were evaluated. Western blotting was used to measure the protein expression of several multidrug resistant transporters. Luciferase reporter assay was performed to determine the binding between MEG3 and miR-21. Our results showed that MEG3 was significantly decreased in imatinib-resistant CML patients and imatinib-resistant K562 cells. Overexpression of MEG3 in imatinib-resistant K562 cells markedly decreased cell proliferation, increased cell apoptosis, reversed imatinib resistance, and reduced the expression of MRP1, MDR1, and ABCG2. Interestingly, MEG3 binds to miR-21. MEG3 and miR-21 were negatively correlated in CML patients. In addition, miR-21 mimics reversed the phenotype of MEG3-overexpression in imatinib-resistant K562 cells. Taken together, MEG3 is involved in imatinib resistance in CML and possibly contributes to imatinib resistance through regulating miR-21, and subsequent cell proliferation, apoptosis and expression of multidrug resistant transporters.

Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice

  • Kim, Juyoung;Kim, Juhae;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.386-392
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. MATERIALS/METHODS: Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. RESULTS: Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including $LXR{\alpha}$, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. CONCLUSIONS: Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

All-trans-retinoic Acid Promotes Iodine Uptake Via Up-regulating the Sodium Iodide Symporter in Medullary Thyroid Cancer Stem Cells

  • Tang, Min;Hou, Yan-Li;Kang, Qiang-Qiang;Chen, Xing-Yue;Duan, Li-Qun;Shu, Jin;Li, Shao-Lin;Hu, Xiao-Li;Peng, Zhi-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1859-1862
    • /
    • 2014
  • Recently, the main therapy of medullary thyroid cancer (MTC) is surgical, but by which way there is a poor prognosis with a mean survival of only 5 years. In some cases, some researchers found that it is the medullary thyroid cancer stem cells (MTCSCs) that cause metastasis and recurrence. This study aimed to eradicate MTCSCs through administration of all-trans-retinoic acid (ATRA). Here we demonstrate that MTCSCs possess stemlike properties in serum-free medium. The ABCG2, OCT4 and sodium iodide symporter (NIS) were changed by ATRA. Additionally, we found that ATRA can increase the expression of NIS in vivo. All the data suggested that ATRA could increase the iodine uptake of MTCSCs through NIS.