• Title/Summary/Keyword: $A^*$ 알고리즘의 휴리스틱

Search Result 428, Processing Time 0.024 seconds

An Addition-Chain Heuristics and Two Modular Multiplication Algorithms for Fast Modular Exponentiation (모듈라 멱승 연산의 빠른 수행을 위한 덧셈사슬 휴리스틱과 모듈라 곱셈 알고리즘들)

  • 홍성민;오상엽;윤현수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.7 no.2
    • /
    • pp.73-92
    • /
    • 1997
  • A modular exponentiation( E$M^{$=varepsilon$}$mod N) is one of the most important operations in Public-key cryptography. However, it takes much time because the modular exponentiation deals with very large operands as 512-bit integers. Modular exponentiation is composed of repetition of modular multiplications, and the number of repetition is the same as the length of the addition-chain of the exponent(E). Therefore, we can reduce the execution time of modular exponentiation by finding shorter addition-chain(i.e. reducing the number of repetitions) or by reducing the execution time of each modular multiplication. In this paper, we propose an addition-chain heuristics and two fast modular multiplication algorithms. Of two modular multiplication algorithms, one is for modular multiplication between different integers, and the other is for modular squaring. The proposed addition-chain heuristics finds the shortest addition-chain among exisiting algorithms. Two proposed modular multiplication algorithms require single-precision multiplications fewer than 1/2 times of those required for previous algorithms. Implementing on PC, proposed algorithms reduce execution times by 30-50% compared with the Montgomery algorithm, which is the best among previous algorithms.

Timing-Driven Routing Method by Applying the 1-Steiner Tree Algorithm (1-Steiner 트리 알고리즘을 응용한 시간 지향 배선 방법)

  • Shim, Ho;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.61-72
    • /
    • 2002
  • In this paper, we propose two timing-driven routing algorithms for single-source net and multi-source net as applications of 1-Steiner heuristic algorithm. Using the method of substituting the cost of 1-Steiner heuristic algorithms with interconnection delay, our routing algorithms can route both single-source net and multi-source net which have all critical source-terminal pairs or one critical pair efficiently Our single-source net routing algorithm reduced the average maximum interconnection delay by up to 2.1% as compared with previous single-source routing algorithm, SERT, and 10.6% as compared with SERT-C. and Our multi-source net routing algorithm increased the average maximum interconnection delay by up to 2.7% as compared with MCMD A-tree, but outperforms it by up to average 1.4% when the signal net has only subset of critical node pairs.

Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm (개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.195-202
    • /
    • 2009
  • In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.

A new algorithm for finding normalized local alignment using handed Smith-Waterman algorithm (Banded Smith-Waterman 알고리즘을 이용하여 정규화된 부분배치를 찾는 새로운 알고리즘)

  • 김상태;심정섭;박희진;박근수;박현석;서정선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.592-594
    • /
    • 2001
  • 두 문자열의 부분배치(local alignment)를 찾는 대표적인 알고리즘인 Smith-Waterman 알고리즘(SW 알고리즘)은 정규화된 최적부분배치를 찾지 못하는 단점이 있다. 최근에 fractional programming 기법을 이용하여 여러 번의 SW 알고리즘을 수행함으로써 정규화된 최적부분배티를 찾는 알고리즘이 제시되었지만 이는 매우 많은 시간이 걸린다. 본 논문에서는 fractional programming 기법을 이용하여 정규화된 최적부분배치를 찾는 알고리즘에, 완전매치(Exact Match)을 이용한 휴리스틱 기법인 Banded SW 알고리즘을 적용하여, 낮은 오차를 가지면서 실용적으로 매우 빠른 정규화된 최적부분배치를 찾는 알고리즘을 제시하고 이 알고리즘과 제시하고 이 알고리즘과 기존의 알고리즘을 직접 구현하여 실험한 결과를 비교 분석한다.

  • PDF

GRASP Algorithm for Dynamic Weapon-Target Assignment Problem (동적 무장할당 문제에서의 GRASP 알고리즘 연구)

  • Park, Kuk-Kwon;Kang, Tae Young;Ryoo, Chang-Kyung;Jung, YoungRan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.856-864
    • /
    • 2019
  • The weapon-target assignment (WTA) problem is a matter of effectively allocating weapons to a number of threats. The WTA in a rapidly changing dynamic environment of engagement must take into account both of properties of the threat and the weapon and the effect of the previous decision. We propose a method of applying the Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, a kind of meta-heuristic method, to derive optimal solution for a dynamic WTA problem. Firstly, we define a dynamic WTA problem and formulate a mathematical model for applying the algorithm. For the purpose of the assignment strategy, the objective function is defined and time-varying constraints are considered. The dynamic WTA problem is then solved by applying the GRASP algorithm. The optimal solution characteristics of the formalized dynamic WTA problem are analyzed through the simulation, and the algorithm performance is verified via the Monte-Carlo simulation.

Improving Diversity of Keyword Search on Graph-structured Data by Controlling Similarity of Content Nodes (콘텐트 노드의 유사성 제어를 통한 그래프 구조 데이터 검색의 다양성 향상)

  • Park, Chang-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.18-30
    • /
    • 2020
  • Recently, as graph-structured data is widely used in various fields such as social networks and semantic Webs, needs for an effective and efficient search on a large amount of graph data have been increasing. Previous keyword-based search methods often find results by considering only the relevance to a given query. However, they are likely to produce semantically similar results by selecting answers which have high query relevance but share the same content nodes. To improve the diversity of search results, we propose a top-k search method that finds a set of subtrees which are not only relevant but also diverse in terms of the content nodes by controlling their similarity. We define a criterion for a set of diverse answer trees and design two kinds of diversified top-k search algorithms which are based on incremental enumeration and A heuristic search, respectively. We also suggest an improvement on the A search algorithm to enhance its performance. We show by experiments using real data sets that the proposed heuristic search method can find relevant answers with diverse content nodes efficiently.

State of the Art Technology Trends and Case Analysis of Leading Research in Harmony Search Algorithm (하모니 탐색 알고리즘의 선도 연구에 관한 최첨단 기술 동향과 사례 분석)

  • Kim, Eun-Sung;Shin, Seung-Soo;Kim, Yong-Hyuk;Yoon, Yourim
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.81-90
    • /
    • 2021
  • There are various optimization problems in real world and research continues to solve them. An optimization problem is the problem of finding a combination of parameters that maximizes or minimizes the objective function. Harmony search is a population-based metaheuristic algorithm for solving optimization problems and it is designed to mimic the improvisation of jazz music. Harmony search has been actively applied to optimization problems in various fields such as civil engineering, computer science, energy, medical science, and water quality engineering. Harmony search has a simple working principle and it has the advantage of finding good solutions quickly in constrained optimization problems. Especially there are various application cases showing high accuracy with a low number of iterations by improving the solution through the empirical derivative. In this paper, we explain working principle of Harmony search and classify the leading research in recent 3 years, review them according to category, and suggest future research directions. The research is divided into review by field, algorithmic analysis and theory, and application to real world problems. Application to real world problems is classified according to the purpose of optimization and whether or not they are hybridized with other metaheuristic algorithms.

A Hybrid Genetic Algorithm for Vehicle Routing Problem which Considers Traffic Situations and Stochastic Demands (교통상황과 확률적 수요를 고려한 차량경로문제의 Hybrid 유전자 알고리즘)

  • Kim, Gi-Tae;Jeon, Geon-Uk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.107-116
    • /
    • 2010
  • The vehicle travel time between locations in a downtown is greatly influenced by both complex road conditions and traffic situation that changes real time according to various external variables. The customer's demands also stochastically change by time period. Most vehicle routing problems suggest a vehicle route considering travel distance, average vehicle speed, and deterministic demand; however, they do not consider the dynamic external environment, including items such as traffic conditions and stochastic demand. A realistic vehicle routing problem which considers traffic (smooth, delaying, and stagnating) and stochastic demands is suggested in this study. A mathematical programming model and hybrid genetic algorithm are suggested to minimize the total travel time. By comparing the results considering traffic and stochastic demands, the suggested algorithm gives a better solution than existing algorithms.

A heuristic path planning method for robot working in an indoor environment (실내에서 작업하는 로봇의 휴리스틱 작업경로계획)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.907-914
    • /
    • 2014
  • A heuristic search algorithm is proposed to plan a collision free path for robots in an indoor environment. The proposed algorithm is to find a collision free path in the gridded configuration space by proposed heuristic graph search algorithm. The proposed algorithm largely consists of two parts : tunnel searching and path searching in the tunnel. The tunnel searching algorithm finds a thicker path from start grid to goal grid in grid configuration space. The tunnel is constructed with large grid defined as a connected several minimum size grids in grid-based configuration space. The path searching algorithm then searches a path in the tunnel with minimum grids. The computational time of the proposed algorithm is less than the other graph search algorithm and we analysis the time complexity. To show the validity of the proposed algorithm, some numerical examples are illustrated for robot.

Transporter Scheduling with Transporter Combination in Shipbuilding (트랜스포터 결합을 고려한 조선소 블록 운반 일정계획)

  • Shin, Jae-Young;Bak, Na-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.3
    • /
    • pp.299-305
    • /
    • 2014
  • In a ship-building, a transporter is the moving equipment to transport ship blocks from a workshop to another in a shipyard. The efficient scheduling of transporters has an important role for the operation of a building ship to be completed on schedule. There are the previous studies on the transporter scheduling for moving blocks in a shipyard. These studies have no consideration for the transporter combination to increase the productivity of moving blocks. This paper presents an efficient transporter scheduling model considering transporter combination explicitly. The objective of this model is to minimize the operational cost and maintain the workload balance among transporters. we also present three heuristics algorithms based on tabu search for finding the solution of the model. The efficiency of the proposed heuristics are verified with several computational tests.