• 제목/요약/키워드: $18^{\circ}C$ Thermal Environment

검색결과 60건 처리시간 0.024초

$25^{\circ}C$환경에서 $18^{\circ}C$환경으로 노출시 보온력이 상이한 의복의 착용이 체온조절 반응에 미치는 영향 (Influences of Wearing Different Thermal Insulated Clothings on Thermoregulatory Responses from $25^{\circ}C$ Environment to 18$^{\circ}C$ Environment)

  • 이종민
    • 한국의류학회지
    • /
    • 제22권7호
    • /
    • pp.826-832
    • /
    • 1998
  • In order to understand the influences of wearing clothings with different thermal insula-tions when men were exposed from $25^{\circ}C$ environment to 18$^{\circ}C$ environment, thermoregulatory responses were measured on 4 healthy female college students. Subjects rested wearing T-shirts, trousers, and socks called LC(total weight 541g) at 25$\pm$1$^{\circ}C$, 50$\pm$5% R.H. and then exposed to the room conditioned in 18$\pm$1$^{\circ}C$, 50$\pm$5$^{\circ}C$ R.H. with LC as it was(LC Type) or with T-shirts, trousers, socks, training wear upper garment, the training wear lower garment called HC (total weight 1368g)(HC Type) for 120 min. The results can be summarized as follows: 1) When subjects were exposed from $25^{\circ}C$ environment to 18$^{\circ}C$ environment, decrease of rectal temperature was significantly smaller in LC Type than in HC Type. 2)Increase of heat production and weight loss had no significant difference between two types of clothing. 3)Internal thermal conductance was higher in HC Type and external thermal conductance was higher in LC Type. Therefore total thermal conductance was higher in LC Type than in HC Type. 4)Decrease of skin temperature was greater in LC Type than in HC Type. 5)Subjects felt colder with LC Type than with HC Type, but did not feel differently in comfort sensation between two types of clothing. It was suggested that less decrease of rectal temperature in LC type inspite of more dry heat loss from body might be ascribed to a shift of blood from the shell area to the core area originating in the vasoconstriction and the lowered internal thermal conductance. In conclu-sion, the importance of the state of internal heat distribution in the homeostasis seemed to be reaffirmed.

  • PDF

서늘한 환경 노출시 고탄력 팬티스타킹 착용의 온열생리적 효과 (Effects of Wearing Support Panty Stocking on Thermoregulatory Responses When Exposed to the Cool Environment)

  • 이종민
    • 한국의류학회지
    • /
    • 제24권5호
    • /
    • pp.696-701
    • /
    • 2000
  • Stockings are considered to be excellent in retention of heat in cool weather. This study was to investigate the physiological effects of wearing support panty stocking when exposed to the cool environment from mild environment. Five healthy female college students wearing(ST) or not wearing(NST) support panty stocking, rested at 25$\pm$1$^{\circ}C$, 50$\pm$5% R.H. and were exposed to 18$\pm$1$^{\circ}C$, 50$\pm$5% R.H. for 90 minutes. The results obtained were as follows: Rectal Temperatures were lower in ST than in NST at both environments. Skin temperatures in ST were revealed higher at $25^{\circ}C$, but lower at 18$^{\circ}C$ than in NST. Heat production and total weight loss didn't show significant difference between ST and NST. Total thermal conductance from the body to the environment was higher in ST than in NST at 18$^{\circ}C$. It was suggested that wearing support panty stocking would keep the body warm in mild environment, but facilitate heat loss from the body in cool environment.

  • PDF

통나무집의 동절기 실내 온열환경 요소의 측정과 온열감 평가에 관한 연구 (A Study on Examination of Indoor Thermal Environment Elements and Thermal Sensation Vote of Log Cabins in Winter Season)

  • 민병철;전지현;국찬
    • 한국주거학회논문집
    • /
    • 제18권2호
    • /
    • pp.21-27
    • /
    • 2007
  • Various buildings constructed by environmentally friendly resources are being built in KOREA. Especially as the wood has distinctive ecological merits in comparison with reinforced concrete and brick, the buildings made by the wood are acknowledged with its superiority of ecological value. Enough field studies for their thermal environment, however, haven't been done. In this study, to investigate indoor environmental condition and occupants' response to it of Log Cabin in Gyeongsangnam-do Hamyang Country Jirisan Natural Recreation Forest, examination of indoor thermal environment and field subjective evaluation have been done in that fundamental information of thermal environment characteristics can be suggested. The results are following; 1) Thermal environment of the Log Cabins; Indoor and outdoor mean dry bulb temperature were $21.9^{\circ}C$ and $-3.1^{\circ}C$, and Indoor and outdoor average relative humidity were 25.8% and 52.1%. These results are below ASHRAE; dry bulb temp. $22.0^{\circ}C$, humidity 30%, and above domestic standards; dry bulb temp. $18{\sim}20.0^{\circ}C$, humidity $40{\sim}60%$. 2) Result of subjective evaluation; Thermal sensation and its comfort were evaluated as 'slightly uncomfortable' because of 'slightly warm'. And humid sensation and its comfort were evaluated as 'slightly uncomfortable' because of 'slightly warm'. 3) Result of vertical temperature and humidity; Vertical temperature difference from head to ankle was $0.54^{\circ}C$ which means most occupants may feel comfortable.

Indoor Neutral Temperature Range using Temperature and Humidity Perception Assessment

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.29-37
    • /
    • 2016
  • Purpose: Indoor thermal comfort can be identified by combination of temperature, humidity, and air flow, etc. However, most thermal indexes in regard to thermal comfort are temperature dominant since it has been considered as a significant factor affecting to indoor thermal comfort The purposes of this study are to investigate indoor neutral temperature range of young Koreans with humidity perception, and to introduce a neutral temperature for temperature preference as well as temperature sensation in order to define the neutral temperature range chosen by occupants. It could be used as basic data for heating and cooling. Method: 26 research participants volunteered in 7 thermal conditions ($18^{\circ}C$ RH 30%, $18^{\circ}C$ RH 60%, $24^{\circ}C$ RH 30%, $24^{\circ}C$ RH 40%, $24^{\circ}C$ RH 60%, $30^{\circ}C$ RH 30%, $30^{\circ}C$ RH 60%) and completed subjective assessment in regard to temperature/humidity sensation and preference twice per condition in an indoor environmental chamber. Result: In RH 30%, sensation neutral temperature was $25.1^{\circ}C$ for men and $27.0^{\circ}C$ for women, and preference neutral temperature was $25.5^{\circ}C$ for men and $27.8^{\circ}C$ for women. In RH 60%, sensation neutral temperature was $23.6^{\circ}C$ for men and $25.9^{\circ}C$ for women, and preference neutral temperature was $23.4^{\circ}C$ for men and $26.3^{\circ}C$ for women. Neutral temperature increased with increasing relative humidity. Women were sensitive to humidity changes. Men expressed humidity changes as temperature variations. In most conditions, preference neutral temperatures were higher than sensation neutral temperatures, however, the preference neutral temperature for men in humid condition was lower than the sensation neutral temperature.

여름철 도시의 일상생활에서 경험하는 환경온도와 온냉감 평가 (24 hours' Exposed Temperature and Thermal Comfort in Summer)

  • 전정윤;이민정
    • 한국주거학회논문집
    • /
    • 제14권3호
    • /
    • pp.51-56
    • /
    • 2003
  • All the outdoor and indoor spaces are connected with each other. The human being moves toward those spaces with temperature fluctuation between the natural and artificial temperature. We conducted an experiment which subjects were wearing the data logger in urban life, and measured 24 hours' exposed temperature and thermal comfort in summer. Results were as follows. 1. Subjects controls their micro climate like this. Most of them(84.6%) get weather information. Fashion(46.2%) and weather(30.8%) are the reasons to select clothes. They spend their time in indoor environment for 84.92% hours of a day and have an air-conditioner(61.5%) in their houses. 2. Temperature fluctuation which subjects were exposed for 24 hours were from 15.6$^{\circ}C$ to 33.8$^{\circ}C$ and average fluctuation was 9.02$^{\circ}C$. The median value of experienced temperature were 26-26.5$^{\circ}C$ and average temperature was 26.18$^{\circ}C$. They experienced cold shock of 3.96 times in a day.

조경용 투수성 블록 포장의 열환경 특성 (Thermal Environment Characteristics of Permeable Block Pavements for Landscape Construction)

  • 한승호;류남형;강진형
    • 한국조경학회지
    • /
    • 제34권2호
    • /
    • pp.18-25
    • /
    • 2006
  • This study aims to measure and to analyze the thermal environment characteristics of the various permeable pavement materials such as grass pavement (GREEN BLOCK PARK), stone and grass pavement (GREEN BLOCK STEP), stone pavement (GREEN BLOCK MOSAIC) and wood pavement (WOOD BLOCK) under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, changes of the temperature on each pavement layer, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 5, 2005, $34.0^{\circ}C$) of the you. Some of main findings are: 1) The heat environment was worse on the wood pavements than on the stone pavement. This is mainly due to the low albedo of the wood pavements (0.37) while the albedo value of stone pavements is 0.41. Small heat capacity of the wood pavements also contributes to this difference. 2) The heat environment was worse on the stone pavements than on the turf pavements. This was mainly due to the evapotranspiration of the plant growth layer of the turf pavements. 3) The peak surface temperature was the highest on the wood pavements ($56.1^{\circ}C$). The peak surface temperatures on the stone pavements, the stone-grass pavements and the grass pavements were $43.1^{\circ}C,\;40.1^{\circ}C\;and\;37.9^{\circ}C$, respectively. 4) To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.

에어컨 온도상승에 따른 온열쾌적성 변화에 관한 연구 (Research on Thermal Comfort by Increasing Air Conditioner Temperature)

  • 김형철;금종수;김동규;정용현
    • 수산해양교육연구
    • /
    • 제18권2호
    • /
    • pp.77-84
    • /
    • 2006
  • This research evaluates thermal comfort by comparing the case of maintain cooing temperature of room with the case of raising it at the point of time that human body begins to adapt. An experiment uses constant temperature & humidity chamber 2 places. Pretesting room make up summer season environment, the testing room control by air-conditioner. In condition that maintain temperature of $33^{\circ}C$. The subjects stay in the pretesting room during the 30 minute for the heat storage amount of the normal summertime. The subjects stay in the testing room under each case (case 1: maintaining $24^{\circ}C$, case 2: maintaining $26^{\circ}C$, case 3: up $1^{\circ}C$ after maintaining $24^{\circ}C$ during 30 minute, case 4: up $1^{\circ}C$ after maintaining $26^{\circ}C$ during 40 minute). 1. Result of comparison of case 1 and case 2 appears that thermal sensitive vote examine from slight cool to cool and thermal comfort examine slight comfort by temperature rise at human body adaptation point of time.2. Test of case 3 and case 4 appear similar value at thermal sensitive vote and thermal comfort.3. Through the case 2 and case 4, continuous thermal comfort maintain at $24^{\circ}C$, if raise $26^{\circ}C$, same thermal comfort maintain after a human body adaptation temperature rising effect bring energy saving.

옥상녹화 및 토양피복 변화가 단독주택지 외부 열환경에 미치는 영향 분석 (Effect of Thermal Environment by Green Roof and Land Cover Change in Detached Housing Area)

  • 김정호;윤용한
    • 환경정책연구
    • /
    • 제10권1호
    • /
    • pp.27-47
    • /
    • 2011
  • 단독주택지의 도시환경보전 및 개선을 위해 서울시 강남구 수서동 일원의 단독주택지 밀집지역을 대상으로 생태 면적률 개념을 적용한 비오톱 유형화와 도시열환경 예측 시뮬레이션을 실시하였다. 생태면적률 개념을 적용하여 비오톱 유형 분류 결과 총 7개 유형으로 구분되었고 옥상녹화 미적용 건폐지비오톱(48.16%) > 불투수비건폐포장비오톱(39.75%) > 전면투수녹지비오톱(6.23%) > 틈새투수비건폐포장비오톱(3.26%) > 전면투수비건폐포장지비오톱(2.51%) > 부분투수비건폐포장지비오톱(0.04%) 순이었다. 단독주택지 외부 열환경 특성 및 변화 예측을 실시한 결과, 비오톱 유형별 지표면 온도값은 불투수비건폐포장지비오톱 > 옥상녹화미적용건폐지비오톱 > 전면투수녹지비오톱 > 투수포장지비오톱이 순이었다. 옥상녹화 100% 적용을 가정한 case 2의 경우 최대 $33.58^{\circ}C$, 최소 $23.85^{\circ}C$였고, 평균 $27.74^{\circ}C$로서 옥상녹화 전에 비해 약 $5.19^{\circ}C$ 감소한 것으로 예측되었다. 평균 외기온도는 case 2가 case 1보다 약 $0.18^{\circ}C$ 낮게 분석되었다.

  • PDF

야간(夜間)의 온실내(溫室內) 보온(保溫)커텐의 보온효과분석(保溫效果分析) (Analysis of Nocturnal Thermal Insulation Effect of Thermal Curtain in Plastic Greenhouse)

  • 조용백;고학균;김문기;김용현
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.22-29
    • /
    • 1989
  • A simulation model of plastic greenhouse was developed to evaluate the insulation effect of thermal curtain. Change in thermal environment with and without thermal curtain was verified through experiments, which agreed with the predicted values satisfactorily. About 18 to 20% of energy was saved in the plastic greenhouse by employing the P.E. film thermal curtain. Employing P.E. film thermal curtain also raised the temperature of the covering film and inner air by $1^{\circ}C$ and $1.5{\sim}1.8^{\circ}C$, respectively.

  • PDF

TCE (trichloroethylene)으로부터 클로로벤젠과 클로로페놀의 생성특성 (Formation Characteristics of Chlorobenzenes and Chlorophenols from TCE)

  • 김은미;심영숙;이우근
    • 한국대기환경학회지
    • /
    • 제18권2호
    • /
    • pp.149-159
    • /
    • 2002
  • The objective of this study was to evaluate the formation characteristics of CBs and CPs from TCE, aliphatic compound. The experiment was carried out in a fixed reactor during 30 min under the oxidation condition at the range of temperature, 300~$700^{\circ}C$. MSWI fly ash was used as catalyst in this study. Total amount of CBs formed greater magnitude than that of CPs overall range of reaction temperature. It is proposed that the formation of CPs was caused from hydroxylation of CBs. According to increasing temperature to $600^{\circ}C$, the yield of CBs and CPs increased but significantly decreased at $700^{\circ}C$. It is suggested that decomposition rate was faster than formation rate at the high temperature. In the homologue distribution of CBs, DCBs were major products at 30$0^{\circ}C$ and the amount of higher chlorinated compound increased to $600^{\circ}C$. Because they were formed by chlorination of lower chlorinated compounds. In case of CPs, the amount of DCPs was 90% of total amounts in both thermal formation and catalytic reaction. On the other hand it was clearly observed that the chlorination rate in catalytic reaction was higher than in thermal formation with TCE only.