• 제목/요약/키워드: $15^{\circ}C$ Low temperature vacuum dry

검색결과 4건 처리시간 0.018초

한국산 굴의 저온진공건조 열전달특성에 관한 연구 (Low temperature vacuum drying heat transfer characteristics of Korean raw oysters)

  • 김경근;송치성;최세현;이서연;문수범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.1-9
    • /
    • 2016
  • 굴은 향기가 좋고 영양성분이 풍부하며 질병 예방의 기능성이 높은 우수한 수산식품으로 동서양인 모두가 선호한다. 대량으로 생산된 굴의 보관 및 유통의 편의성을 증가시키는 가장 좋은 방법은 건조하는 것인데, 기존의 열풍건조나 동결건조에 의할 경우에는 굴의 육질이 매우 약하여 향과 영양 성분의 파괴가 많아 완전건조가 불가능하다. 본 논문에서는 $15^{\circ}C$ 저온진공건조기술을 이용하여 한국산 양식 생굴과 자연산 생굴을 완전 건조하는 과정에서 진공상태하의 진공열전달특성에 관한 실험적 결과를 보고하였다.

일시다획성 적색육어류를 이용한 중간식품소재 개발에 관한 연구 2. 저염 고등어 Fillet의 가공 (Processing of Ready-to-Cook Food Materials with Dark Fleshed Fish 2. Processing of Ready-to-Cook Low Salt Mackerel Fillet)

  • 이병호;이강호;유병진;서재수;정인학;최병대;지영애
    • 한국수산과학회지
    • /
    • 제18권5호
    • /
    • pp.409-416
    • /
    • 1985
  • In previous paper (Lee et al., 1983) processing method of sardine meat "surimi" was described as a part of the wort to develop new types of ready-to-cook food materials with dark fleshed fishes. As the other part of the work, processing of low salt mackerel fillet was investigated, in this paper, in which fresh mackerel was filleted, salted in brine or with dry salt for an adequate time until the expected salt concentration reached, washed, air dried (3 m/sec, 15 to $20^{\circ}C$), and finally packed individually in K-flex film bag by vacuum or $N_2$ gas substitution. Salting time and salt concentration of brine was decided by the salt level penetrated into the fillet. As the final salt level was fixed to 4 to $5\%$, salting for 20 hours with $10\%$ dry salt or in $15\%$ brine at $5^{\circ}C$ was enough to get that level of salt. If the final salt level was set 5 to $6\%$, salting for 20-24 hours with $15\%$ dry salt or in $20\%$ brine was adequate. Salt penetration, however, was not much influenced by salting method and temperature. Changes in VBN and salt soluble protein occurred more rapidly in cases of salting with dry salt at $20^{\circ}C$ than salted in brine at $5^{\circ}C$, although it was not significant in the period of 20 to 24 hours. Oxidation of lipid and histamine formation during salting at $20^{\circ}C$ could not be neglected if it was delayed loger than 25 hours. Insolubilizing the salt soluble proteins during the storage of salted fillet occurred rapidly regardless of storage temperature. Browning and histamine formation, however, was depended on temperature and packing condition. In case of air pack, deterioration by browning and rancid was deeply developed but not the case for the packs by vacuum or $N_2$ gas substitution. The shelf-life of the salted mackerel fillet based on panel scores of brown color and rancidity, appeared 21 days for the air packed, and more than 30 days for vacunm or $N_2$ gas packed fillet at $20^{\circ}C$.

  • PDF

방사선 조사 온도가 타락죽의 이화학적 및 관능적 품질 특성에 미치는 영향 (Effect of Irradiation Temperature on Physicochemical and Sensory Properties of Tarakjuk (Milk Porridge))

  • 한인준;송범석;이주운;김재훈;최갑성;박정로;전순실
    • 한국식품영양과학회지
    • /
    • 제40권9호
    • /
    • pp.1307-1313
    • /
    • 2011
  • 방사선 조사 기술을 이용한 타락죽의 멸균 시 관능적 품질을 개선하기 위한 연구의 일환으로 방사선 조사온도에 따른 타락죽의 pH, 지질산패도, 점도, 색도, 관능검사 및 향기패턴을 측정하였다. 그 결과 pH와 색도의 경우 방사선 조사에 의한 변화는 없는 것으로 나타났다. 지질산패도의 경우 조사구 가운데 냉동조사구가 가장 낮았으나, 점도에서는 냉동조사구가 가장 높게 나타났다. 관능검사 결과, 종합적 기호도에서 냉동조사구의 경우 대조구와 유의적 차이가 없는 것으로 나타났다. 향기패턴 분석 결과, 지질산패 및 이취에 관련된 RT 3.88 sec의 peak와 타락죽 고유의 향과 관련한 RT 7.34 sec의 peak를 구분할 수 있었다. 따라서 방사선을 조사에 의한 타락죽의 관능적 품질 저하는 냉동조사를 통해 개선이 가능하였으나, 여전, 지질산패와 점도감소 및 조사취 발생 등에 의한 타락죽 고유의 관능적 품질이 감소되는 것으로 나타나, 추후 항산화제의 첨가 또는 포장방법의 변화 등과 병용처리를 통해 보다 효과적인 품질 개선을 위한 연구가 필요할 것으로 사료되었다.

생사의 포합향상에 관한 연구 (Studies on Raw Silk Cohesion for Promotion)

  • 최병희;김병호;원성희
    • 한국잠사곤충학회지
    • /
    • 제15권1호
    • /
    • pp.37-48
    • /
    • 1973
  • The purpose of this studies is to improve the cohesion of raw silk through various analyses on cocoon drying, cooking, reeling, re-reeling, and on the properties of water. Also we investigated the correlation between silk testing items which we have reached to the following results. 1. Drying of cocoon When cocoons were slowly dried with 100$^{\circ}C$, the results of cohesion became much better. On the other hand, the results were considerably decreased in case the temperature with 115$^{\circ}C$. 2. Cooking of cocoon In case of the cooking of cocoon, we found that the result of cohesion was best with incomplete cooking, that of the control was next, while in over cooking, the results were very low. Also the results of cohesion were much better when using the method of over cooking with sericin arrestive agent than that of incomplete cooking with sericin agglutinating agent. 3. Reeling of cocoon A) When the temperature of reeling bath was 25-45$^{\circ}C$, the results of cohesion test were much better, but at the temperature below 25$^{\circ}C$ or above 45$^{\circ}C$, the results became worse. B) With out the process of croissieur, the results of cohesion were too bad, but in case of croissieur more than 1cm, cohesion became better rapidly. Further more, we understood that the results of cohesion were improving slightly with longer length of croissieur. C) When the velocity of reeling was increased, the results of cohesion also improved. The best results were shown when reeling velocity was 180-220 r.p.m. But when the velocity was increased more than 220 r.p.m., the results of cohesion got worse more or less. D) When the temperature of the drying pipe in reeling machine was raised, the results of cohesion also showed a tendency to improve. 4. Re-reeling A) We could net reach a conclusion as to have correlation between the number of dipping repeat in vacuum tank and the results of cohesion before re-reeling process. B) When we used Seracol 500 as an agglutination protective agent with l/1000 to l/2000 of water, the results of cohesion test were better. C) When we used Pearl-lite as an agglutination protective agent with 1/1000 to 1/2000 of water, the results of cohesion were considerably better. D) We gained tile best results when used Cohesion Improving Chemical, A-80, with 500-1500 times diluted. 1) Results of cohesion was improved when humidity was low or temperature was high in the rereeling machine. 5. Filature water A) The water pH near the isoelectric point of protein showed the best cohesion, but the farther water pH, the worser results were obtained. B) With the increasing of M-alkalinity in filature water, the results of cohesion were worse. Above all, we understood the tendency of the results of cohesion get worse when the M-alkalinity is increased above 200 ppm. C) By increasing the total hardness of the filature water, it improved the results of cohesion. Especially, when the total hardness was above 300ppm, the results were extremely high. 6. Effects combination of each results A) The result of effects combination in filature processes with the obtained best conditions was distinctively improved. But the results could not reach in mathematicaly double effect. When reelied under worse conditions, the results of cohesion test were too bad. There was "effect limit" for the promotion. B) Generally the results of cohesion were bad when the filature conditions(the temperature, pressure and the properties of water, etc) are processed as sericin loss to be high. On the other hand, the results were very good when lower sericin loss was controlled in filature conditions. C) When filature conditions such as reeling velocity and croissieur length provide pysical cohesion ability and when raw silk dry fast during reeling and re-reeling, we found the result of cohesion was better. 7. Correlation of silk testing items. A) A negative correlation exists between the results of cohesion test and cleanness defect. Another word, the result of cohesion test was found to be worse as cleanness defect increased. B) In cleanness, cohesion has negative correlation against the number of slugs, but we could not find any correlation against long loops, loose ends. C) Cohesion has negative correlation against average neatness and low neatness defect. The better the results of neatness respectively, the better the results of cohesion found. D) There is no correlation between tenacity and the results of cohesion test, but there was high positive correlation between the results of elongation and those of cohesion test. The more elongation, the better the results of cohesion was found.

  • PDF