• Title/Summary/Keyword: $0.96MgTiO_3-0.04SrTiO_3$

Search Result 11, Processing Time 0.028 seconds

The Microwave Dielectric Properties of $0.96MgTiO_3-0.04SrTiO_3+xLa(0{\sim}1.0wt%)$ Ceramics ($0.96MgTiO_3-0.04SrTiO_3+xLa(0{\sim}1.0wt%)$ 세라믹스의 마이크로파 유전 특성)

  • Park, Bo-Geun;Um, Sung-Soo;Kim, Kang;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.118-120
    • /
    • 2001
  • The $0.96MgTiO_3-0.04SrTiO_3+xLa(0{\sim}1.0wt%)$ ceramics were prepared by conventional mixed oxide method. The structural properties of $0.96MgTiO_3-0.04SrTiO_3+xLa(0{\sim}1.0wt%)$ ceramics with sintering temperature were investigated by the XRD and SEM. From the X-ray diffraction patterns, it was found that the perovskite $SrTiO_3$ and ilmenite $MgTiO_3$ structures were coexisted in the $0.96MgTiO_3-0.04SrTiO_3$ ceramics. The second phase of $Sr_{0.5}LaTi_2O_6$ was shown with addition of the $La_2O_3$. The dielectric constant(${\varepsilon}_r$), $Q{\times}f$ value and the temperature coefficient of the $0.96MgTiO_3-0.04SrTiO_3+0.2La$ ceramics were 21. 41, 39991, $-3.3ppm/^{\circ}C$, respectively.

  • PDF

Microwave dielectric properties of $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$ ($B_2O_3$ 첨가에 따른 $0.96MgTiO_3-0.04SrTiO_3$의 마이크로파 유전특성)

  • Kim, Jung-Hun;Choi, Eui-Sun;Lee, Mun-Ki;Jung, Jang-Ho;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.682-685
    • /
    • 2002
  • The $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$(10wt%) were prepared by the conventional mixed oxide method. The structural properties were investigated with sintering temperature by XRD. According to the X-ray diffraction pattern of the $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$(10wt%), the ilmenite $MgTiO_3$ and perovskite $SrTiO_3$ structures were coexisted and secondary phase of the $MgTi_2O_5$ were appeared. In the case of $0.96MgTiO_3-0.04SrTiO_3+B_2O_3$(10wt%) ceramics sintered $1225^{\circ}C$, dielectric constant, quality factor and temperature coefficient of resonant frequency were 19.82, 62,735GHz, $-2.983ppm/^{\circ}C$, respectively.

  • PDF

Microwave Dielectric Properties of the MST Ceramics with addition of Ce (Ce첨가에 따른 MST 세라믹스의 마이크로파 유전특성)

  • Choi, Eui-Sun;Park, In-Gil;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.430-433
    • /
    • 2001
  • The $0.96MgTiO_{3}-0.04SrTiO_{3}+xCe(x=0{\sim}1.6wt%)$ ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were $1300^{\circ}C$, 2hr., respectively. From the X-ray diffraction patterns, it was found that the perovskite $SrTiO_{3}$ and ilmenite $MgTiO_{3}$ structures were coexisted in the $0.96MgTiO_{3}-0.04SrTiO_{3}+xCe(x=0{\sim}1.6wt%)$ ceramics. The dielectric constant$(\varepsilon_{r})$ was increased with addition of Ce. The temperature coefficient of resonant frequency$(\Gamma_{f})$ was gradually varied from positive value to the negative value with increasing the Ce. The temperature coefficient of resonant frequency of the $0.96MgTiO_{3}-0.04SrTiO_{3}+0.2Ce$ ceramics was near zero, where the dielectric constant, quality factor, and $\Gamma_{f}$ were 20.68, 50,272 and ${-0.5ppm/^{\circ}C}$, respectively.

  • PDF

Microwave Dielectric Properties of the MST Ceramics with Addition of Ce (Ce첨가에 따른 MST 세라믹스의 마이크로파 유전특성)

  • 최의선;박인길;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.430-433
    • /
    • 2001
  • The 0.96MgTiO$_3$-0.04SrTiO$_3$+xCe(x=0∼1.6 wt%) ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were 1300$^{\circ}C$, 2hr., respectively. From the X-ray diffraction patterns, it was found that the perovskite SrTiO$_3$ and ilmenite MgTiO$_3$ structures were coexisted in the 0.96MgTiO$_3$-0.04SrTiO$_3$+xCe(x=0∼1.6 wt%) ceramics. The dielectric constant($\varepsilon$$\sub$r/) was increased with addition of Ce. The temperature coefficient of resonant frequency($\tau$$\sub$f/) was gradually varied from positive value to the negative value with increasing the Ce. The temperature coefficient of resonant frequency of the 0.96MgTiO$_3$-0.04SrTiO$_3$+0.2Ce ceramics was near zero, where the dielectric constant, quality factor, and $\tau$$\sub$f/ were 20.68, 50, 272 and -0.5pm/$^{\circ}C$, respectively.

  • PDF

Microwave dielectric properties of 0.96Mg$TiO_3$-0.04Sr$TiO_3$ ceramics with $V_2O_5$ ($V_2O_5$ 첨가에 따른 0.96Mg$TiO_3$-0.04Sr$TiO_3$ 세라믹스의 마이크로파 유전특성)

  • Nam, Gyu-Bin;Lee, Moon-Kee;Kim, Kang;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1485-1487
    • /
    • 2002
  • The 0.96Mg$TiO_3$-0.04Sr$TiO_3$ ceramics with $V_2O_5$(5wt%) were prepared by the conventional mixed oxide method. The structural properties were investigated with sintering temperature by XRD and SEM. According to the X-ray diffraction patterns of the 0.96Mg$TiO_3$-0.04Sr$TiO_3$ceramics with $V_2O_5$(5wt%), the ilmenite $MgTiO_3$ and perovskite $SrTiO_3$ structures were coexisted and secondary phase $MgTi_2O_5$ were appeared. Increasing the sintering temperature, the grain size was increased and three types of grains were exhibited: larger circular grain, small square grain and lapth-shaped grain. In the case of 0.96Mg$TiO_3$-0.04Sr$TiO_3$ ceramics with $V_2O_5$(10wt%), dielectric constant, quality factor and temperature coefficient of resonant frequency were $15.24{\sim}18.55$, $22,890{\sim}42,100$GHz, -24.5${\sim}$+2.414ppm/$^{\circ}C$, respectively.

  • PDF

Microwave Dielectric Properties of the $MgTiO_3-SrTiO_3$ Ceramics ($MgTiO_3-SrTiO_3$ 세라믹스의 마이크로파 유전특성)

  • 배경인;이상철;최의선;배선기;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.376-381
    • /
    • 2001
  • The(1-x) MgTiO$_3$-xSrTiO$_3$(x=0.03~0.04) ceramics were fabricated by the conventional mixed oxide method. The structural and microwave dielectric properties were investigated by XRD, SEM, EDS and network analyzer. The sintering temperature and time were 1275$^{\circ}C$~135$0^{\circ}C$ and 2hours, respectively. In the XRD results of 0.96MgTiO$_3$-0.04SrTiO$_3$ceramics, the perovskite structure of SrTiO$_3$and ilmenite structure of MgTiO$_3$phase were coexisted. The dielectric constant($\varepsilon$(sub)${\gamma}$) and temperature coefficient of resonant frequency($\tau$(sub)f) were increased with addition of SrTiO$_3$. In thie case of 0.96MgTiO$_3$-0.04SrTiO$_3$ ceramics sintered at 13$25^{\circ}C$, the dielectric constant, quality factor(Q) and temperature coefficient of resonant frequency($\tau$(sub)f) were 20.13, 7956(at 7.27GHz), and +1.76ppm/$^{\circ}C$, respectively.

  • PDF

Microwave Dielectric Properties of the $MgTiO_3$ Ceramics with $SrTiO_3$ ($SrTiO_3$ 첨가에 따른 $MgTiO_3$ 세라믹스의 마이크로파 유전특성)

  • Bae, Koung-In;Park, In-Gil;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.473-475
    • /
    • 2000
  • The (1-x)$MgTiO_3-xSrTiO_3$$(x=0.03{\sim}0.04)$ ceramics were fabricated by conventional mixed oxide method. The structural properties and microwave dielectric properties were investigated by XRD, SEM and HP8757D network analyzer. In the $0.96MgTiO_3-0.04SrTiO_3$ ceramics, the perovskite structure $SrTiO_3$ and ilmenite structure $MgTiO_3$ phases were coexisted. The dielectric constant(${\varepsilon}_r$ and temperature coefficient of resonant frequency(${\tau}_f$) was increased with addition of $SrTiO_3$. In the case of $0.96MgTiO_3-0.04SrTiO_3$ ceramics sintered at $1325^{\circ}C$, the dielectric constant, quality factor and temperature coefficient of resonant frequency were 20.13, 7956(at 7.27GHz), +1.7568ppm/$^{\circ}C$, respectively.

  • PDF

Microwave Dielectric Properties of the (1-x)Mg$TiO_3$-xSr$TiO_3$(x=0.02~0.08)Ceramics with Sintering Temperature (소결온도에 따른 (1-x)Mg$TiO_3$-xSr$TiO_3$(x=0.02~0.08)세라믹스의 마이크로파 유전특성)

  • Choi, Eui-Sun;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1011-1016
    • /
    • 2000
  • The (1-x)MgTi $O_3$-xSrTi $O_3$(x=0.02~0.08) ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were 125$0^{\circ}C$~1375$^{\circ}C$ and 2hours. The structure and microwave dielectric properties were investigated with sintering temperature and composition ratio. From the X-ray diffraction patterns, the cubic SrTi $O_3$and hexagonal MgTi $O_3$structures were coexisted in the (1-x)MgTi $O_3$-xSrTi $O_3$(x=0.02~0.08) ceramics. The dielectric constant($\varepsilon$$_{r}$) was increased and the temperature coefficient of resonant frequency($\tau$$_{f}$)was decreased with addition of SrTi $O_3$. The temperature coefficient of resonant frequency($\tau$$_{f}$) was gradually varied from negative value to positive value with increasing SrTi $O_3$. In the case of 0.96MgTi $O_3$-0.04SrTi $O_3$ceramics sintered at 130$0^{\circ}C$, the dielectric constant, quality factor and temperature coefficient of resonant frequency were 20.5, 5918(at 7.33GHz) and +10ppm/$^{\circ}C$, respectively.y.y.y.

  • PDF

Occurrence and Chemical Composition of White Mica and Chlorite from Laminated Quartz Vein of Unsan Au Deposit (운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong, Kwangyang) in Korea. The geology of this deposit consists of series of host rocks including Precambrian metasedimentary rock and Jurassic Porphyritic granite. The deposit consists of Au-bearing quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it is an orogenic-type deposit. Quartz veins are classified as 1) galena-quartz vein type, 2) pyrrhotite-quartz vein type, 3) pyrite-quartz vein type, 4) pegmatic quartz vein type, 5) muscovite-quartz vein type and 6) simple quartz vein type based on mineral assembles. The studied quartz vein is pyrite-quartz vein type which occurs as sericitization, chloritization and silicification. The white mica from stylolitic seams of laminated quartz vein occurs as fine or medium aggregate associated with white quartz, pyrite, chlorite, rutile, monazite, apatite, K-feldspar, zircon and calcite. The structural formular of white mica from laminated quartz vein is (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00. It indicated that white mica of laminated quartz vein has less K, Na and Ca, and more Si than theoretical dioctahedral micas. Compositional variations in white mica from laminated quartz vein are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution. The structural formular of chlorite from laminated quartz vein is((Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8. It indicated that chlorite of laminated quartz vein has more Si than theoretical chlorite. Compositional variations in chlorite from laminated quartz vein are caused by phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV) and octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. Therefore, laminated quartz vein and alteration minerals of the Unsan Au deposit was formed during ductile shear stage of orogeny.

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China (중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.83-100
    • /
    • 2022
  • The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.