• 제목/요약/키워드: ${Si}_3 {N}_4$세라믹 공구

검색결과 15건 처리시간 0.018초

$Si_3N_4$계 세라믹 절삭공구의 절삭특성 평가 (Cutting Characteristic of $Si_3N_4$ based Ceramic Inserts)

  • 안영진;고영목;권원태;김영욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.655-659
    • /
    • 2002
  • This study is performed to develop the Si$_3$N$_4$ based ceramic inserts. Si$_3$N$_4$with addition of SiC and A1$_2$O$_3$ is investigated to determine the possibility to be a new tool. The tool life of Si$_3$N$_4$ insert with more than 20wt% SiC is shorter than commercial Si$_3$N$_4$ insert during machining both heat treated SCM440 and gray cast iron. Even though SiC has higher hardness than Si$_3$N$_4$, its chemical affinity to the iron on high temperature may causes deteriorat ion of tool life. To the contrary, Si$_3$N$_4$insert with A1$_2$O$_3$ shows increase of tool life up to 300% compared to the commercial Si$_3$N$_4$insert. It may attribute to the high temperature stability of A1$_2$O$_3$. Further study will be focused on the optimization of ceramic inserts with the composition of Si$_3$N$_4$and A1$_2$O$_3$.

  • PDF

SiAlON계 절삭공구 소재의 특성 비교 (A Comparative Study on Characteristics of Cutting Tool Materials Based on SiAlON Ceramics)

  • 김성원;최재형
    • 한국분말재료학회지
    • /
    • 제28권6호
    • /
    • pp.502-508
    • /
    • 2021
  • SiAlON-based ceramics are a type of oxynitride ceramics, which can be used as cutting tools for heat-resistant super alloys (HRSAs). These ceramics are derived from Si3N4 ceramics. SiAlON can be densified using gas-pressure reactive sintering from mixtures of oxides and nitrides. In this study, we prepare an α-/β-SiAlON ceramic composite with a composition of Yb0.03Y0.10Si10.6Al1.4O1.0N15.0. The structure and mechanical/thermal properties of the densified SiAlON specimen are characterized and compared with those of a commercial SiAlON cutting tool. By observing the crystallographic structures and microstructures, the constituent phases of each SiAlON ceramic, such as α-SiAlON, β-SiAlON, and intergranular phases, are identified. By evaluating the mechanical and thermal properties, the contribution of the constituent phases to these properties is discussed as well.

초경공구를 사용한 $Si_3 N_4$-hBN 머시너블 세라믹 가공에서 절삭 파라미터 분석과 결정 (Analysis of Cutting Parameters for $Si_3 N_4$-hBN Machinable Ceramics Using Tungsten Carbide Tool)

  • 장성민;조명우;조원승;박동삼
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.36-43
    • /
    • 2003
  • In machining of ceramic materials, they are very difficult-to cut materials because of there high strength and hardness. Machining of ceramics are characterized by cracking and brittle fracture. Generally, ceramics are machined using conventional method such as finding and polishing. However these processes are generally costly and have low MRR(material removal rate). This paper focuses on determining the optimal levels of process parameters for products with CNC machining center. For this purpose, the optimization of cutting parameters is performed based on experimental design method. A design and analysis of experiments is conducted to study the effects of these parameters on the surface roughness by using the S/N ratio, analysis of ANOVA and F-test. Cutting parameters, namely, cutting speed, feed and depth of cut are optimized with consideration of the surface roughness.

세라믹 및 초경합금 성형체의 피절삭성 (Machinability of ceramic and WC-Co green compacts)

  • 이재우
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

미세 절삭에 의한 금형 가공기술 개발 (A Study on the Micro Machining Technology of Mold and Die)

  • 이응숙;제태진;이선우;이동주
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.231-238
    • /
    • 2002
  • 미세 절삭에 의한 마이크로 형상가공 및 이를 이용한 미세금형 가공기술개발을 위하여 절삭 공구를 이용한 기계적 미세 가공법에 대한 고찰과 더불어 shaping, end-milling, drilling 등의 가공이 가능한 기계적 미세 가공시스템을 구성하고 이를 이용한 미세 치형 그루브와 미세 격벽 등 미세 형상 구조의 금형 개발을 위한 가공실험을 수행하였다. 본 실험에서는 먼저 shaping 방식으로 세 종류의 다이아몬드 바이트를 사용하여 알루미늄, PMMA, Nickel, 황동 등의 소재에 pitch $150{\mu}m$, 높이 $8{\mu}m$ 내외의 미세 치형의 금형 코어를 가공하였고, 다음으로 Z축에 air spindle을 설치하여 $\phi0.2mm$의 end-mill(WC)을 사용하여 황동 소재에 깊이 $200{\mu}m$, 폭 $200{\mu}m,\;100{\mu}m,\;50{\mu}m,\;30{\mu}m$의 두께 변화를 주어 미세 격벽에 대한 가공실험을 하였다. 미세 구멍가공실험으로는 drilling 전용장비를 구성하여 $\phi0.6\~0.15mm$의 drill공구로 SM45C와 세라믹$(Si_3N_4-BN)$ 소재에 스텝이송방식에 의한 미세 구멍 가공 실험을 실시하였다.

  • PDF