• 제목/요약/키워드: ${Al_2}{O_3}$-C

검색결과 2,883건 처리시간 0.034초

Al-isopropoxide로부터 제조한 AlN 세라믹스의 기계적 성질과 미세구조에 미치는 산화물 첨가제의 영향 (Effects of Oxide Additions on Mechanical Properties and Microstructures of AlN Ceramics Prepared from Al-isopropoxide)

  • 이홍림;황해진
    • 한국세라믹학회지
    • /
    • 제27권6호
    • /
    • pp.799-807
    • /
    • 1990
  • In this study, effects of oxide additives on mechanical properties and microstructure of A1N and A1N polytype ceramics were investigated. Fine A1N powder was synthesized by nitriding alumiuim hydroxide prepared from Al-isopropoxide, at 1350$^{\circ}C$ for 10h in N2 atmosphere. By adding 3w/o Y2O3, 0.56w/o CaO, and 10w/o SiO2 to AlN powder, AlN and AlN polytype ceramics were prepared by hot-pressing under the pressure of 30 MPa at 1800$^{\circ}C$ for 1h. AlN ceramics with no additives formed considerable amount of AlON phase, while AlN ceramics doped with Y2O3 or CaO decreased AlON phase and formed Y-Al or Ca-Al oxide compound. AlN+10w/o SiO2(+3w/o Y2O3) composition produced AlON and AlN polytype compound having 21R as a major phase. Room temperature flexural strength of AlN ceramics with no additive was 246MPa, and room temperature flexural strength and critical temperature difference by thermal shock(ΔTc) of AlN ceramics dooped with Y2O3 or CaO were 532MPa/340$^{\circ}C$ and 423MPa/300$^{\circ}C$, respectively. Y2O3 and CaO used as sintering agent played roles of densification and oxygen removal of AlN ceramics, and affected grain growth/grain morphologies of AlN ceramics.

  • PDF

알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 (Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxide)

  • 이형민;이홍림;조덕호
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1212-1218
    • /
    • 1995
  • Al2O3-coated SiC composite powder and mechanically mixed Al2O3-SiC composite powder were synthesized using Al-isopropoxide and commercial SiC as the starting materials. Experiment results showed that the sinterability of Al2O3-coated SiC composite powder was more improved than the mechanically mixed Al2O3-SiC composite powder by the effect of homogeneous coating of alumina around SiC particles. Hence, the mechanical properties of the former was also much more improved than the latter.

  • PDF

$NbC_x-C_{1-x}/Y_2O_3$ 박막코팅을 이용한 $Al_2O_3/Ti$ 계면특성향상 -(2) 계면특성평가 (Enhanced $Al_2O_3/Ti$ Interfacial Properties Using $NbC_x-C_{1-x}/Y_2O_3$ Interlayers-(2) Determination of the Interfacial Properties)

  • 문철희
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.921-926
    • /
    • 1997
  • Two NbCx-C1-x/Y2O3/Ti sputter-coated Al2O3 substrates (L 5.5 cm$\times$W 0.5 cm) were diffusion bonded together using hot press method at 95$0^{\circ}C$ for 3 hours under 1 MPa of applied pressure. 4 points bending tests were used to evaluate the mechanical performance of these precracked laminate beams. Two types of mechanical responses were observed: crack penetration through the interface for x=0.75, 1 and crack deflection into an interface for x=0.25, 0.5. The Al2O3/NbCx-C1-x/Y2O3/Ti system suggested here has been proves to be effective for the thermokinetical stability and tailorability of the interfaces of Al2O3/Ti composites at 95$0^{\circ}C$.

  • PDF

$Al_2O_3+Y_2O_3를 첨가한 {\beta}-SiC-TiB_2$ 복합체의 특성 (Properties of the $\beta-SiC-TiB_2$ Composites with $Al_2O_3+Y_2O_3$ additives)

  • 임승혁;신용덕;주진영;윤세원;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권7호
    • /
    • pp.394-399
    • /
    • 2000
  • The mechanical and electrical properties of pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), TiB2, and (Al5Y3O12). Reaction between Al2O3 and $Y_2O_3$ formed YAG but the relative density decreased with increasing $Al_2O_3+Y_2O_3$ contents. The Flexural strength showed the value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives at room temperatures. Owing to crack deflection and crack bridging, the fracture toughness showed 6.2, 6.0 and 6.6 MPa.m1/2 for composites added with 4, 8 and 12 wt% Al2O3+Y2O3 additives respectively at room temperature. The resistance temperature coefficient showed the value of $3.6\times10^{-3},\; 2.9\times10^{-3}\; and\; 3.0\times10^{-3} /^{\circ}C$$^{\circ}C$ for composite added with 4, 8 and 12 wt% $Al_2O_3+Y_2O_3$additives respectively at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}$.

  • PDF

$80Al_2O_3-20Al$ 복합재료의 내열충격성: 실험과 유한요소 해석 (Thermal Shock Resistance of $80Al_2O_3-20Al$ Composites: Experiments and Finite Element Analysis)

  • 김일수;신병철
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.201-204
    • /
    • 2000
  • Thermal shock resistance of 80Al2O3-20Al composite and monolithic alumina ceramics was compared. Fracture strength was measured by using a 4-pont bending test after quenching. Thermal stresses of the ceramics and ceramic-metal composites were calculated using a finite element analysis. The bending strength of the Al2O3 ceramics decreased catastropically after quenching from 20$0^{\circ}C$ to $0^{\circ}C$. The bending strength of the composite also decreased after quenching from 200~2$25^{\circ}C$, but the strength reduction was much smaller than for Al2O3. The maximum thermal stress occured in the monolithic alumina ceramics when exposed to a temperature difference of 20$0^{\circ}C$ was 0.758 GPa. The same amount of stress occured in the Al2O3-Al composite when the temperature difference of 205$^{\circ}C$ used.

  • PDF

K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계 (Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3)

  • 함철환;임성기;이충기;유승을
    • 공업화학
    • /
    • 제10권7호
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K_2O-MgO-Al_2O_3$의 3성분계로부터 $K^+-{\beta}/{\beta}"-Al_2O_3$를 직접 고상반응법에 의하여 합성하였다. 합성시 초기조성, 합성온도, 합성시간 및 분쇄매체가 ${\beta}/{\beta}"-Al_2O_3$ 상형성 및 상관계에 미치는 영향에 대하여 분석하였으며 최대 분율의 ${\beta}"-Al_2O_3$ 상형성을 위한 최적 합성조건을 연구하였다. 조성범위로서 $K_2O$$Al_2O_3$상형성의 몰비를 1:5에서 1:6.2로, 안정화제로 사용된 MgO는 4.2 wt % 에서 6.3 wt % 사이에서 변화시켰으며 합성온도는 $1000^{\circ}C$에서 $1500^{\circ}C$까지 취하였다. ${\beta}/{\beta}"-Al_2O_3$상은 ${\alpha}-Al_2O_3$$KAlO_2$가 결합하는 $1000^{\circ}C$ 부근에서 형성되기 시작하여 점차 증가하다가 $1200^{\circ}C$ 부근에서 ${\alpha}-Al_2O_3$가 모두 사라지면서 균일화되었다. ${\beta}"-Al_2O_3$ 상분율은 $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$의 조성과 함께 $1300^{\circ}C$ 부근에서 최대값을 보였다. $1300^{\circ}C$ 이상의 합성 온도에서는 높은 potassium의 증기압에 따른 $K_2O$의 손실에 의하여 ${\beta}"-Al_2O_3$ 상분율이 감소하였으며 합성시간은 5시간 정도가 적당하였다. 분쇄 및 혼합을 위한 분산매체로는 증류수보다는 아세톤의 효과가 뛰어났다.

  • PDF

알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 (Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides)

  • 이홍림;김규영
    • 한국세라믹학회지
    • /
    • 제30권2호
    • /
    • pp.123-130
    • /
    • 1993
  • Dispersed type Al2O3-SiC composite powders were synthesized from Al-isopropoxide (Al(i-OC3H7)3) and Si(OC2H5)4 precursors by hydrolysis of mixed alkoxides and carbothermal reaction method. The characteristics of the synthesized (dispersed type) Al2O3-SiC composite powders were investigated using XRD, SEM, TEM, BET and particle size analyzer. Carbothermal reaction to produce Al2O3-SiC composite was completed in 10h at 135$0^{\circ}C$ on 3~4㎤/s (0.21~0.28cm/s) of H2 flow rate and about 1/1 of carbon/oxides(=SiO2+Al2O3) molar ratio. The synthesized powders were observed to have the mean particle size range of 0.4~1.26${\mu}{\textrm}{m}$ and showed finer particle size with increasing SiC content.

  • PDF

비정질 $SiO_2$${alpha}-Al_2O_3$부터 Mullite를 합성하기 위한 고체상태 반응속도 (Solid-state reaction kinetics for the formation of mullite($3Al_2O_3{\cdot}2SiO_2$) from amorphous $SiO_2$ and ${alpha}-Al_2O_3$)

  • 김익진;곽효섭;고영신
    • 한국결정성장학회지
    • /
    • 제8권2호
    • /
    • pp.332-341
    • /
    • 1998
  • ${\alpha}-Al_2O_3$와 비정질 SiO2부터 Mullite를 합성하기 위한 고체상태반응의 반응속도를 1450~$1480^{\circ}C$ 온도 범위에서 연구하였다. 반응속도는 $Al_2O_3$분말을 코팅한 28.16wt%의 $SiO_2$와 일정한 온도에서 여러 시간동안 가열하여 생성된 혼합물에 의하여 결정되었다. MgO안의 반응물과 미반응물의 양은 X-선 회절분석에 의하여 결정되었다. Mullite의 부피율과 peak intensity 비의 자료로부터 $Al_2O_3$$SiO_2$$3Al_2O_3\;{\cdot}\;2SiO_2$형태로의 반응은 $1450^{\circ}C$$1480^{\circ}C$ 사이에서 시작되었다. 고체상태반응 활성화 에너지는 Arrhenius 식에 의하여 결정되었다. 활성화 에너지는 31.9KJ/mol이다.

  • PDF

$Al_2O_3+Y_2O_3 첨가량에 따른 {\beta}-SiC-ZrB_2$계 전도성 복합체의 특성 (The Properties of $\beta-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$Contents)

  • 신용덕;주진영;황철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.516-522
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of$Al_2O_3+Y_2O_3$ Phase analysis of composites by XRD revealed $\alpha-SiC(6H) ZrB_2\; and YAG(Al_5Y_3O_{12})$ The relative density of composites were increased with increased Al2O3+Y2O3 contents. The Flexural strength showed the highest value of 390.6MPa for composites added with 20wt% Al2O3+Y2O3 additives at room temperature. Owing to crack deflection crack bridging phase transition and YAG of fracture toughness mechanism the fracture toughness showed the highest value of 6.3MPa.m1/2 for composites added with 24wt% Al2O3+Y2O3 additives at room temperature. The resistance temperature coefficient showed the value of$ 2.46\times10^{-3}\;, 2.47\times10^{-3},\; 2.52\times10^{-3}/^{\circ}C$ for composite added with 16, 20, 24wt% Al2O3+Y2O3 additives respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $256{\circ}C\; to\; 900^{\circ}C$.

  • PDF

알루미나 탄화규소 복합세라믹스 균열치유재의 강도와 탄성파 특성 (Strength of Crack Healed-Specimen and Elastic Wave Characteristics of Al2O3/SiC Composite Ceramics)

  • 김해숙;김미경;김진욱;안석환;남기우
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.425-431
    • /
    • 2007
  • [ $Al_2O_3/SiC$ ]composite ceramics were sintered to evaluate the bending strength and elastic wave characteristics. The three-point bending test was carried out under room temperature. The elastic wave was detected by fracture wave detector. The crack healing behavior was investigated from 1373 K to 1723 K. The bending strength of $Al_2O_3/SiC$ composite by nanocomposite is higher than that of $Al_2O_3$ monolithic. Crack-healing behavior depended on an amount of additive powder $Y_2O_3$. In $Al_2O_3/SiC$ composite ceramics with 3 wt. % $Y_2O_3$ for additive powder, the bending strength at 1573 K is about 100% increase than that of the smooth specimens. From the result of wavelet analysis of elastic wave signal, the smooth specimen and heat treated specimen of $Al_2O_3$ monolithic and $Al_2O_3/SiC$ composite ceramics showed characteristics of frequency about 58 kHz. The strength of $Al_2O_3/SiC$ composite ceramics was a little higher than those of $Al_2O_3$ monolithic. The dominant frequencies were high with increasing of $Y_2O_3$ for additive powder. The dominant frequencies had direct connection with the bending strength.