• Title/Summary/Keyword: ${\theta}$-prime ideal

Search Result 4, Processing Time 0.019 seconds

CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS

  • Cheon, Jeoung-Soo;Kim, Eun-Jeong;Lee, Chang-Ik;Shin, Yun-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.277-290
    • /
    • 2011
  • We show that the ${\theta}$-prime radical of a ring R is the set of all strongly ${\theta}$-nilpotent elements in R, where ${\theta}$ is an automorphism of R. We observe some conditions under which the ${\theta}$-prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (${\theta}$, ${\theta}^{-1}$)-(semi)primeness of ideals of R.

SOME RESULTS ON FUZZY COSETS AND HOMOMORPHISMS OF N-GROUPS

  • Satyanarayana, Bhavanari;Syam Prasad, Kuncaham;Venkata Pradeep Kumar, Tumurukora;Thota, Srinivas
    • East Asian mathematical journal
    • /
    • v.23 no.1
    • /
    • pp.23-36
    • /
    • 2007
  • In this paper we consider the fuzzy ideals of N-group G where N is a nearring. We introduce fuzzy ideal ${\theta}_{\mu}$ of the quotient N-group $G/{\mu}$ with respect to a fuzzy ideal $\mu$ of G. If $\mu$ is a fuzzy ideal of G and $\theta$ a fuzzy ideal of $G/{\mu}$ such that ${\theta}_{\mu}\;{\subseteq}\;{\theta}$ and ${\theta}_{\mu}(0)\;=\;{\theta}(0)$, then corresponding ${\sigma}_{\theta}\;:\;G\;{\rightarrow}\;[0,\;1]$ is defined and proved that it is a fuzzy ideal of G such that ${\mu}\;{\subseteq}\;{\sigma}_{\theta}$ and ${\mu}(0)\;=\;{\sigma}_{\theta}(0)$. We also prove some results on homomorphisms and fuzzy ideals of N-groups. The image and preimage of fuzzy ideal $\mu$ under N-group homomorphism were studied. Finally it is obtained that if $f\;:\;G\;{\rightarrow}\;G^1$ is an epimorphism of N-groups, then there is an order preserving bijection between the fuzzy ideals of $G^1$ and the fuzzy ideals of G that are constant on kerf. Some examples related to these concepts were illustrated.

  • PDF

SOME RESULTS CONCERNING ($\theta,\;\varphi$)-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.207-215
    • /
    • 2003
  • Let R be a prime ring with characteristic different from two and let $\theta,\varphi,\sigma,\tau$ be the automorphisms of R. Let d : $R{\rightarrow}R$ be a nonzero ($\theta,\varphi$)-derivation. We prove the following results: (i) if $a{\in}R$ and [d(R), a]$_{{\theta}o{\sigma},{\varphi}o{\tau}}$=0, then $\sigma(a)\;+\;\tau(a)\;\in\;Z$, the center of R, (ii) if $d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$, (iii) if $[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$, then a = 0 or R is commutative.

  • PDF

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).