• Title/Summary/Keyword: ${\tau}$-Appell's function

Search Result 2, Processing Time 0.018 seconds

SOME τ-EXTENSIONS OF LAURICELLA FUNCTIONS OF SEVERAL VARIABLES

  • KALLA, SHYAM LAL;PARMAR, RAKESH KUMAR;PUROHIT, SUNIL DUTT
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.239-252
    • /
    • 2015
  • Motivated mainly by certain interesting extensions of the ${\tau}$-hypergeometric function defined by Virchenko et al. [11] and some ${\tau}$-Appell's function introduced by Al-Shammery and Kalla [1], we introduce here the ${\tau}$-Lauricella functions $F_A^{(n),{\tau}_1,{\cdots},{\tau}_n}$, $F_B^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and $F_D^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and the confluent forms ${\Phi}_2^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and ${\Phi}_D^{(n),{\tau}_1,{\cdots},{\tau}_n}$ of n variables. We then systematically investigate their various integral representations of each of these ${\tau}$-Lauricella functions including their generating functions. Various (known or new) special cases and consequences of the results presented here are also considered.

REMARKS FOR BASIC APPELL SERIES

  • Seo, Gyeong-Sig;Park, Joong-Soo
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.463-478
    • /
    • 2009
  • Let k be an imaginary quadratic field, ℌ the complex upper half plane, and let ${\tau}{\in}k{\cap}$ℌ, q = exp(${\pi}i{\tau}$). And let n, t be positive integers with $1{\leq}t{\leq}n-1$. Then $q^{{\frac{n}{12}}-{\frac{t}{2}}+{\frac{t^2}{2n}}}{\prod}^{\infty}_{m=1}(1-q^{nm-t})(1-q^{nm-(n-t)})$ is an algebraic number [10]. As a generalization of this result, we find several infinite series and products giving algebraic numbers using Ramanujan's $_{1{\psi}1}$ summation. These are also related to Rogers-Ramanujan continued fractions.