• Title/Summary/Keyword: ${\sigma}-{\pi}$ interaction

Search Result 18, Processing Time 0.019 seconds

PMO Theory of Orbital Interactions (Part 7). $\sigma-\pi$ Interactions

  • Kong, Byung-Hoo;Lee, Byung-Choon;Lee, Ik-Choon;Yang, Ki-Yull
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.277-279
    • /
    • 1985
  • Orbital interactions of the types, ${\sigma}-{\pi},\;{\sigma}^*-{\pi},\;{\sigma}-{\pi}^*\;and\;{\sigma}^*-{\pi}^*$ are investigated for the rotamers of ${\alpha}$-X-acetones (X = F and Cl) using STO-3G method of calculation. It was found that the interactions are possible only in gauche forms, and the ${\sigma}^*-{\pi}^*$ interactions are in general greater than the $\sigma-\pi$ interactions due to the greater overlap, in spite of the greater energy gap involved; the greater ${\sigma}^*-{\pi}^*$ interaction causes greater lowering of ${\pi}^*$ level relative to the lowering of ${\sigma}$ in the ${\sigma}-{\pi}$ interaction so that both ${\sigma}-{\pi}^*$ and $n-{\pi}^*$ interactions are enhanced in the gauche forms. The extra stability of the gauche form and the red shift in the $n-{\pi}^*$ transition are thus found to be natural corollaries of the greater ${\sigma}^*-{\pi}^*$ interaction in the gauche forms.

Assessment of the Performance of B2PLYP-D for Describing Intramolecular π-π and σ-π Interactions

  • Choi, Tae-Hoon;Han, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4195-4198
    • /
    • 2011
  • Intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions are omnipresent for numerous energetic and structural phenomena in nature, and the exact description of these nonbonding interactions plays an important role in the accurate prediction of the three-dimensional structures for numerous interesting molecular systems such as protein folding and polymer shaping. We have selected two prototype molecular systems for benchmarking calculations of intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions. Accurately describing conformational energy of such systems requires highly elaborate but very expensive ab initio methods such as coupled cluster singles, doubles, and (triples) (CCSD(T)). Our calculations reveal a double hybrid density functional incorporating dispersion correction (B2PLYP-D) that agrees excellently with the CCSD(T) results, indicating that B2PLYP-D can serve as a practical method of choice.

MO Studies of Configuration and Conformation (XV). Through-Space and Through-Bond Interactions In Ethylene Diamine (배치와 형태에 관한 분자궤도론적 연구 (제15보). 에틸렌 디아민의 Through-Space 및 Through-Bond 상호작용)

  • Ikchoon Lee;Chang Kook Sohn;Chang Hyun Song
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.65-72
    • /
    • 1982
  • STO-3G level computations were performed on n-propylamine, n-propylamine radical and cis-and trans-ethylene diamines in order to investigate structural contributions of (n${\pi}$/m) and (n-${\sigma}^*$) structures to the energy variations accompanying the conformational changes. It was found that (5${\pi}$/5) and (4${\pi}$/4) structures had attractive and repulsive nonbonded interactions, respectively, which were approximately additive. anti(n-${\sigma}^*$) structures had more stabilzing hyperconjugative interactions than syn(n-${\sigma}^*$) structures, but due to the large internuclear repulsion the net effect was destabilizing inthe former in contrast with the net stabilizing contribution in the latter. Moreover it was found that the stabilizing ${\pi}$-nonbond structure, (5${\pi}$/5) was always cooperatively reinforced by the more stabilizing anti(n-${\sigma}^*$) interaction, whereas the destabilizing (4${\pi}$/4) structure was accompanied by the less stabilizing syn(n-${\sigma}^*$) interaction. This type of cooperativity was found general through-bond interaction of the terminal lone pair lobes split the energy levels into two, $n_+ = \frac{1}{\sqrt{2}}(n_1 + n_2)$ and $n_- = \frac{1}{\sqrt{2}}(n_1 - n_2)$, the latter being the lower level, which can be shown using simple overlap patterns of the two lobes with a common vicinal ${\sigma}^*$ orbital.

  • PDF

A Quantitative Analysis of $\pi$-Nobonded and Through-Bond Interactions in n-Butane, n-Buthyl Radical and Tetramethylene Diradical$^1$

  • Lee Ikchoon;Cheun Young Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 1982
  • A quantitative treatment of ${\pi}$-nonbonded and $n-{\sigma}^{\ast}$ interactions and through-bond coupling effect was attempted using n-butane, n-butyl radical, and tetramethylene diradical. Results of STO-3G level calculations showed that: (1) conformational preferences can be predicted quantitatively based solely on the additive effect of ${\pi}$-nonbonded and $n-{\sigma}^{\ast}$ interactions, the predominant effect being the ${\pi}$-nonbonded interactions, (2) $(n-{\sigma}^{\ast})_{anti}$ is destabilizing whereas $(n-{\sigma}^{\ast})_{syn}$ is weakly stabilizing, which are contrary to what we expect from the normal $n-{\sigma}^{\ast}$ interaction, (3) througb-bond coupling of the two radical lobes is destabilizing for the triplet but stabilizing for the singlet tetramethylene diradical.

Semi-Empirical MO Calculations on ${\pi}$-Nonbonded and ${\sigma}$-Conjugative Interactions (반경험적 분자궤도함수 계산법에 의한 ${\pi}$-비결합 및 ${\sigma}$-컨쥬게이션 상호작용에 관한 연구)

  • Ikchoon Lee;Young Gu Cheun;Kiyull Yang;Wang Ki Kim
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.195-204
    • /
    • 1982
  • Semi-empirical MO calculations, EHT, CNDO/2, MINDO/3, and MNDO met hods, were performed on various geometries of n-butane, n-alkyl radical and tetramethylene diracal (triplet) in order to compare eigenvalue and eigenvector properties with those obtained by STO-3G method. All methods predicted the same relative order of stabilities of various geometries for n-butane; geometrical preferences were found to be dominated by one-electron factor, ${\pi}$-orbital energy changes being more impotant in the semi-empirical methods. The hyperconjugative energy changes accompanying structural changes from $(n-{\sigma}{\ast})_{trans}$ to (n-{\sigma}{\ast})cis were underestimated in the EHT, CNDO/2 and MINDO/3, whereas those were overestimated in the MNDO. The net destabilizing effect of $(n-{\sigma}{\ast})_{trans}$ structure was mainly due to the large internuclear energy involved in the structure. Through-space interaction between $n_1$ and $n_2$ orbitals of diradical caused energy gap narrowing of ${\Delta}E_{sp}$ and ${\Delta}{\varepsilon}={\varepsilon}_0$-${\varepsilon}_{av}$; through-space interaction had opposing effect to that of through-bond interaction. Due to the less severe neglect of differential overlaps in the MNDO, this energy gap narrowing effect appeared amplified in the MNDO. In general orbital properties were found to be reproduced satisfactorily, but eigenvalue properties were not, in all the semi-empirical methods especially when ${\sigma}-{\sigma}{\ast}$ and n-$n-{\sigma}{\ast}$interactions were involved.

  • PDF

Studies on the Dissociation Constant of Benzoic Acid and Substituted Benzoic Acids in Methanol-Water Mixtures by Conductometric Method (메탄올-물 혼합용매에서 전도도법에 의한 벤조산 및 치환된 벤조산의 해리에 관한 연구)

  • Min Soo Cho;Hyoung Ryun Park;Soon Ki Rhee;Kye Soo Lee;Bon Su Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.196-203
    • /
    • 1991
  • The $pK_a$ values of benzoic acid and meta, para-halogen substituted benzoic acids in MeOH-$H_2O$ mixtures (0∼80% of MeOH) have been determined at 25$^{\circ}$C using a conductometric method on the basis of the Fuoss-Kraus equation, and further verified using modified conductometric method of Gelb. The dependence of $pK_a$ on halogen substituents has been discussed in terms of substituent-constant (${\sigma}$), which is devided into electron-withdrawing inductive contribution (${\sigma}_1$) and electron-donating ${\pi}$-resonance one (${\sigma}_R$). The linear-dependence of ${\sigma}_1$'s on $D^{-1}$ with positive slope and that of ${\sigma}_R$'s on $D^{-1}$ with negative slope have been interpreted on the basis of field effect and through-space interaction of ${\pi}$-lone pair of halogen substituent and ionization center via ${\pi}$-system of benzene ring.

  • PDF

Theoretical Studies on Orbital Interactions and Conformation of ${\alpha}$-Substituted Acetones (${\alpha}$-치환 아세톤의 궤도간 상호작용과 형태에 관한 이론적 연구)

  • Ikchoon Lee;Kiyull Yang;Wang Ki Kim;Byung Hoo Kong;Byung Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.9-18
    • /
    • 1986
  • MNDO and STO-3G calculations were performed to determine relative stabilities of rotamers for ${\alpha}$-substituted acetones, $CH_2XCOCH_3$, X = F, Cl, OH, SH, and $NH_2$. It was found that rotamers corresponding to gauche forms are preferred for all the ${\alpha}$-substituents except for X = F and NH$_2$, for which the cis forms were the preferred ones. The stability of gauche form was dictated by the stabilizing two-orbital-two-electron interaction ${\sigma}_{cx}$-${\pi}_{co}^*$, operating uniquely in the gauche form due to the substantial vicinal overlap and energy gap narrowing between ${\sigma}_{cx}$ and ${\pi}_{co}^*$ orbitals. The energy gap narrowing was caused by the lowering of ${\pi}_{co}^*$ level due to the hyperconjugative ${\sigma}_{cx}^*$-${\pi}_{co}^*$ interactions; the red shift in the n-${\pi}^*$ transition was another effect of the relatively large ${\sigma}_{cx}^*$-${\pi}_{co}^*$ splitting. Various ${\sigma}-{\pi}$ interactions in the gauche form were found to be stronger in the third-row hetero atom system, X = Cl and SH. Interactions between nonbonding orbital on N, $n_N$ and vicinal C-C ${\sigma}$ bond were shown to be stronger in the trans than in the cis orientation.

  • PDF

Electronic structure of the Au intercalated monolayer graphene on Ni(111)

  • Hwang, H.N.;Jee, H.G.;Han, J.H.;Tai, W.S.;Kim, Y.D.;Hwang, C.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.342-342
    • /
    • 2010
  • We have investigated an Au intercalated monolayer graphene on Ni(111) using angle-resolved photoemission spectroscopy (ARPES), high resolution photoemission spectroscopy (HRPES), and low energy electron diffraction (LEED) at the 3A2 ARUPS beamline in Pohang Accelerator Laboratory. We find the monolayer graphene is well grown on the Ni(111) surface by the adsorption of acetylene. However, the graphene does not show the characteristic $\pi$ band near the Fermi level due to its strong interaction with the underlying substrate. When Au is adsorbed on the surface and then annealed at high temperature, we observe that Au is intercalated underneath the monolayer graphene. The process of the Au intercalation was monitored by HRPES of corresponding Au 4f and C 1s core levels as well as the electronic structure of the $\sigma$, $\pi$ states at $\Gamma$, K points. The $\sigma$, $\pi$ bands of graphene shift towards the Fermi level and the $\pi$ band is clearly observed at K point after the intercalation of full monolayer Au. The full width at half maximum (FWHM) of the C 1s peak narrows to approximately 0.42 eV after intercalation. These results imply that the interaction between the graphene and substrate is considerably weakened after the Au intercalation. We will discuss the graphene is really closer to ideal free standing graphene suggested recently.

  • PDF

Influence of Carbon Vacancies on CO Chemisorption on TiC(001): A Theoretical Study

  • Kang, Dae-Bok
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • The extended $H{\ddot{u}}ckel$ method is employed to analyze the interaction of carbon monoxide with the TiC(001) surfaces, both perfect and containing carbon vacancies. CO exhibits a similar ${\sigma}$-donation interaction for both $Ti_{25}C_{25}$ and $Ti_{25}C_{23}$ clusters, as deduced from the fact that the populations of the CO $5{\sigma}$ orbital are identical upon adsorption, but it bonds more strongly with the $Ti_{25}C_{23}$ than with the $Ti_{25}C_{25}$ because the metal d electron density in $Ti_{25}C_{23}$ provides ${\pi}$ back-bonding interactions with CO that are absent in $Ti_{25}C_{25}$. This work suggests that a difference in reactivity toward CO of stoichiometric TiC and TiC with carbon defects is connected with the occupancy of $2{\pi}^*$ orbitals that leads to a significant weakening of the C-O bond.

Synthesis and Optical Chracterization of 1,1-Difunctioanl-2,3,4,5-Tetraphenylsilole (1,1-Difunctional-2,3,4,5-Tetraphenylsilole의 합성과 광학적 특성)

  • Song, Jinwoo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.65-68
    • /
    • 2009
  • Siloles of considerable current interest, both because of their unusual electronic properties and because of their possible application as electron-transporting materials in devices such as light-emitting diodes (LED's) and chemical sensor. Siloles have been characterized by NMR, FT-IR, and UV-vis absorption spectroscopy. Their optical characteristics have been also investigated using photoluminescence spectroscopy. Thus siloles exhibit a low reduction potential and a low-lying LUMO energy level, attributed to ${\sigma}^*-{\pi}^*$ conjugation arising from the interaction between the ${\sigma}^*$ orbital of the sigma-bonded silicon atom and the $\pi^*$ orbital of the butadiene moiety of the ring.

  • PDF