• Title/Summary/Keyword: ${\sigma} _{p measured}$ / ${\sigma} _{p best estimated}$

Search Result 2, Processing Time 0.019 seconds

The Effects of Sample Disturbance on Consolidation Properties of Yang-San Clay (시료교란이 양산 점토의 압밀특성에 미치는 영향)

  • 박정규;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.95-102
    • /
    • 1999
  • It is important to estimate the magnitude of settlement and the time of primary consolidation in geotechnical engineering projects. For these purposes, site explorations and laboratory tests are usually performed. However, the mechanical properties determined from laboratory tests on the samples obtained by different sampling techniques show different trends. In this study, three types of consolidation test were carried out on the soil samples obtained by three different sampling techniques (76mm tube, 76mm piston, and block samples), to verify the effect of sample disturbance on consolidation properties. It was found that sampling methods have influence on the $\varepsilon$ - log $\sigma$'$_{v}$ relationship. While insignificant difference of compression indices from the samples obtained by different sampling techniques was observed in compression region, these values showed a different trend in precompression region. The values of $c_{v}$ and k of block samples had a tendency to be larger than those of piston and tube samples. At consolidation pressure larger than $\sigma$'$_{p}$, however, these properties became similar regardless of sampling methods. The block and piston samples gave slightly higher values of $C_{a/}$ $C_{c}$ than tube samples. In the results of I $L_{EOP}$ and CRS test, it was observed that the values of $\sigma$'$_{p measured}$/$\sigma$'$_{p best estimated}$ of Yang-San clay decreases when strain becomes larger than 1.0% and that precompression strain of block samples is in the range of 1.5~2.0% while those of piston and tube samples are 1.75~3.75%. It was also shown that the values of $\sigma$'$_{p}$ of block samples exceed those of piston and tube samples by about 6~10%.6~10%.%.%.%.%.

  • PDF

Drainage Performance of Various Subsurface Drain Materials- (배수개선공법개발에 관한 연구(I) -각종 지하배수용 암거재료의 배수성능-)

  • 김철회;이근후;유시조;서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.104-120
    • /
    • 1979
  • I. Title of the Study Studies on the Development of Improved Subsurface Drainage Methods. -Drainage Performance of Various Subsurface Drain Materials- II. Object of the Study Studies were carried out to select the drain material having the highest performance of drainage; And to develop the water budget model which is necessary for the planning of the drainage project and the establishment of water management standards in the water-logged paddy field. III. Content and Scope of the Study 1. The experiment was carried out in the laboratory by using a sand tank model. The drainage performance of various drain materials was compared evaluated. 2. A water budget model was established. Various parameters necessary for the model were investigated by analyzing existing data and measured data from the experimental field. The adaptability of the model was evaluated by comparing the estimated values to the field data. IV. Results and Recommendations 1. A corrugated tube enveloped with gravel or mat showed the highest drainage performance among the eight materials submmitted for the experiment. 2. The drainage performance of the long cement tile(50 cm long) was higher than that of the short cement tile(25 cm long). 3. Rice bran was superior to gravel in its' drain performance. 4. No difference was shown between a grave envelope and a P.V.C. wool mat in their performance of drainage. Continues investigation is needed to clarify the envelope performance. 5. All the results described above were obtained from the laboratory tests. A field test is recommended to confirm the results obtained. 6. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as follows; $$D=\Sigma\limit_{t=1}^{n}(Et-R_{\ell}-I+W_d)..........(17)$$ 7. Among the various empirical formulae for potential evapotranspiration, Penman's formular was best fit to the data observed with the evaporation pans in Jinju area. High degree of positive correlation between Penman;s predicted data and observed data was confirmed. The regression equation was Y=1.4X-22.86, where Y represents evaporation rate from small pan, in mm/100 days, and X represents potential evapotranspiration rate estimated by Penman's formular. The coefficient of correlation was r=0.94.** 8. To estimate evapotranspiration in the field, the consumptive use coefficient, Kc, was introduced. Kc was defined by the function of the characteristics of the crop soil as follows; $Kc=Kco{\cdot}Ka+Ks..........(20)$ where, Kco, Ka ans Ks represents the crop coefficient, the soil moisture coefficient, and the correction coefficient, respectively. The value of Kco and Ka was obtained from the Fig.16 and the Fig.17, respectively. And, if $Kco{\cdot}Ka{\geq}1.0,$ then Ks=0, otherwise, Ks value was estimated by using the relation; $Ks=1-Kco{\cdot}Ka$. 9. Into type formular, $r_t=\frac{R_{24}}{24}(\frac{b}{\sqrt{t}+a})$, was the best fit one to estimate the probable rainfall intensity when daily rainfall and rainfall durations are given as input data, The coefficient a and b are shown on the Table 16. 10. Japanese type formular, $I_t=\frac{b}{\sqrt{t}+a}$, was the best fit one to estimate the probable rainfall intensity when the rainfall duration only was given. The coefficient a and b are shown on the Table 17. 11. Effective rainfall, Re, was estimated by using following relationships; Re=D, if $R-D\geq}0$, otherwise, Re=R. 12. The difference of rainfall amount from soil moisture depletion was considered as the amount of drainage required. In this case, when Wd=O, Equation 24 was used, otherwise two to three days of lag time was considered and correction was made by use of storage coefficient. 13. To evaluate the model, measured data and estimated data was compared, and relative error was computed. 5.5 percent The relative error was 5.5 percent. 14. By considering the water budget in Jinju area, it was shown that the evaporation amount was greater than the rainfall during period of October to March in next year. This was the behind reasonning that the improvement of surface drainage system is needed in Jinju area.

  • PDF