• 제목/요약/키워드: ${\pi}$-conjugated organic materials

검색결과 13건 처리시간 0.025초

New Semiconducting Multi-branched Conjugated Molecules Bearing 3,4-Ethylene-dioxythiophene-based Thiophenyl Moieties for Organic Field Effect Transistor

  • Kim, Dae-Chul;Lee, Tae-Wan;Lee, Jung-Eun;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon;Han, Yoon-Deok;Cho, Mi-Yeon;Joo, Jin-Soo
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.491-498
    • /
    • 2009
  • New $\pi$-conjugated multi-branched molecules were synthesized through the Homer-Emmons reaction using alkyl-substituted, 3,4-ethylenedioxythiophene-based, thiophenyl aldehydes and octaethyl benzene-l,2,4,5-tetrayltetrakis(methylene) tetraphosphonate as the core unit; these molecules have all been fully characterized. The two multi-branched conjugated molecules exhibited excellent solubility in common organic solvents and good self-film forming properties. The semiconducting properties of these multi-branched molecules were also evaluated in organic field-effect transistors (OFET). With octyltrichlorosilane (OTS) treatment of the surface of the $SiO_2$ gate insulator, two of the crystalline conjugated molecules, 7 and 8, exhibited carrier mobilities as high as $2.4({\pm}0.5){\times}10^{-3}$ and $1.3({\pm}0.5){\times}10^{-3}cm^2V^{-1}s^{-1}$, respectively. The mobility enhancement of OFET by light irradiation ($\lambda$ = 436 nm) supported the promising photo-controlled switching behavior for the drain current of the device.

Oligothiophene-based Semi-Conducting Nanostructures: from Solution to Solid-State Aggregates

  • Leclere, Ph.;Surin, M.;Lazzaroni, R.;Feast, W.J.;Schenning, A.P.H.J.;Meijer, E.W.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.304-304
    • /
    • 2006
  • The possibility to develop optoelectronic devices with improved properties by controlling the degree of organization at the molecular level of organic materials has been driving the design of new ${\pi}-conjugated$ systems. In particular, the organization by self-assembling processes (${\tilde{\Box}}{\d{\Box}}}$ interactions, hydrogen bonding) of well-defined oligomeric systems such as disubstituted oligothiophene derivatives has been demonstrated as a promising approach to conjugated materials with a high degree of structural order of the constituent building blocks. The self-organization of conjugated building blocks in solution or on surfaces, leading to the construction of nanoscopic and mesoscopic architectures, represents a starting point for the construction of molecular electronics or even circuits, through surface patterning with nanometer-sized objects.

  • PDF

Impedance Spectroscopy of ${\pi}$-Conjugated Organic Materials

  • Kim, Seong-Hyun;Chu, Hye-Yong;Zyung, Taeh-Young;Yang, Yong-Suk
    • ETRI Journal
    • /
    • 제26권2호
    • /
    • pp.161-166
    • /
    • 2004
  • AC electrical properties of organic light-emitting diodes with poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene) (MEH-PPV), poly[2,5-bia(dimethyloctylsilyl)-1,4-phenylenevinylene] (BDMOS-PPV), and tris-(8-hydroxyquinolate)-aluminum $(AlQ_3)$ as light-emitting materials are studied. The frequency-dependent real and imaginary parts of impedance were fitted using an equivalent circuit. We found that the conduction mechanism is a space-charge limited current with exponential trap distribution.

  • PDF

Conjugated Oligomers Combining Fluorene and Thiophene Units : Towards Supramolecular Electronics

  • Leclere, Ph.;Surin, M.;Sonar, P.;Grimsdale, A.C.;Mllen, K.;Cavallini, M.;Biscarini, F.;Lazzaroni, R.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.228-228
    • /
    • 2006
  • Conjugated oligomers, used as models for fluorene-thiophene copolymers, are compared in terms of the microscopic morphology of thin deposits and the optical properties. The AFM images and the solid-state absorption and emission spectra are interpreted in line with the structural data, in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long strip-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates. The difference in behavior between the two compounds most probably originates from their different capability of forming densely-packed assemblies of ${\pi-pi}$ interacting molecules. These assemblies are used as active elements in organic field effect transistors designed by using soft lithography technique.

  • PDF

Exciton dissociation yields of semiconducting polymer thin film devices doped by various phosphorescent emitters

  • An, J.D.;Chang, J.Y.;Han, J.W.;Im, C.;Chin, B.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1010-1013
    • /
    • 2006
  • To understand the exact charge carrier photogeneration properties of photoactive thin films consisting of a ${\pi}-conjugated$ polymer matrix and a triplet dopant, we prepared two types of polymer, poly(9-vinylcarbazole) (PVK) and poly[9,9-bis(2- ethylhexyl)fluorene-2,7-diyl] (PF2/6) doped with triplet emitters for organic light-emitting diodes (OLED), either iridium(III)fac-tris(2-phenylpyridine) $(Ir(ppy)_3)$ or iridium(III)bis[(4,6-fluorophenyl)- $pyridinato-N,C^2'$]picolinate (FIrpic), as thin film devices by using the conventional method. Those doped film devices, as well as pristine film devices, on ITO substrates were characterized by means of steady state photocurrent measurement for a wide spectral range.

  • PDF

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Fabrication of Conducting Polymer Nanomaterials Using Soft Template Method

  • Jang, Jyong-Sik
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.76-77
    • /
    • 2006
  • Conducting polymers have been attracting considerable attention from both scientific and industrial perspectives by virtue of the beneficial electrical and optical properties originating from their unique ${\pi}-conjugated$ system. Many efforts have been devoted toward fabricating conducting polymer nanomaterials. Of the various synthetic methodologies, soft template method has emerged as a very promising tool in fabricating conducting polymer nanomaterials. For last a few years, our research group has intensively studied the fabrication and application of conducting polymer nanomaterials. In this talk, the recent achievement in the synthetic methodology based on the use of soft templates will be discussed.

  • PDF

Anthraquinone and Indole based Chemosensor for Fluoride Anions Detection

  • Son, Young-A;Kim, Sung-Hoon
    • 한국염색가공학회지
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2014
  • We have designed and synthesized the colorimetric chemosensor through the reactions of 1,2-anthraquinone and indol-3-carboxaldehyde. Due to its well conjugated D-${\pi}$-A system and the existence of NH-fragment in indole moiety, we expected that the chemosensor can detect target anions with NH-fragment in indole part of the structure. In this regard, UV-Vis absorption spectra were measured to investigate sensing properties of the probe toward different anions in DMSO. This chemosensor shows to detect fluoride anions with absorption change in intensity. These properties are mainly related to the deprotonation effect. ICT system in this molecule was also observed by the computational approach using Material Studio 4.3 package.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • 김범준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

유기발광 다이오드(OLED) 및 이를 위한 청색형광체 (Recent Research Highlights in Blue Fluorescent Emitters in Organic Light-Emitting Diodes)

  • 박영일;김진철;서봉국;조득희
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.233-236
    • /
    • 2014
  • 유기발광 다이오드(Organic light emitting diodes)는 차세대 평판디스플레이로 학문적으로나 산업적으로 많은 관심을 받고 있다. 그러나 고성능 유기발광 다이오드의 생산을 위해서는 극복해야 할 많은 과제들이 여전히 남아있다. 그중 청색발광물질은 자체의 넓은 밴드갭으로 인해 녹색과 적색 발광재료에 비해 낮은 효율을 보이고 있다. 그러므로 많은 사람들이 높은 효율을 가진 청색 발광물질을 개발하기 위해 많은 노력을 기울이고 있다. 따라서 본 논문에서는 유기발광 다이오드의 기본개념과 청색 발광물질의 개발에 대해 간략하게 소개하였다.