• Title/Summary/Keyword: ${\pi}$-퍼지 논리

Search Result 15, Processing Time 0.029 seconds

Fuzzy PWM Speed Algorithm for BLDC Motor (BLDC 모터용 Fuzzy PWM 속도 알고리즘)

  • Shin, Dong-Ha;Han, Sang-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.295-300
    • /
    • 2018
  • Conventionally, a PI control algorithm has been widely used as a speed control algorithm for BLDC motor. The PI control algorithm has a disadvantage in that is slow to reach the steady state due to the slow speed and torque response with various speed changes. Therefore, in this paper, PWM fuzzy logic control algorithm which can reach the steady state quickly by improving the response speed although there is a little overshoot is proposed. PWM reduces response speed and fuzzy logic control algorithm minimizes overshoot. The proposed PWM fuzzy logic control algorithm consists of DC chopper, PWM duty cycle regulator, and fuzzy logic controller. The performance and validity of the proposed algorithm is verified by simulation with Simulink of Matlab 2018a.

An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction (주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합)

  • Dao, Tuanhung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.43-58
    • /
    • 2014
  • As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.

A Study on Development of a Fuzzy Tuner for Tuning Gains of a PI Contorller (PI제어기 이득 조정을 위한 퍼지동조기 개발에 관한 연구)

  • 허윤기;최일섭;최승갑
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.64-72
    • /
    • 1995
  • This paper proposes how to tune the gains of PI controllers in case of gain change in a process control system. Controllers of PI type have been used in industry and the gains of the controllers have been tuned by expert engineers. It, therefore, takes much time and efforts to tune the controllers. It is more difficult to find gains of multi-loop processes. The tuning method of a fuzzy tuner in this paper is developed based on the assumptions that the PI controllers are of analog type and are tuned off-line, and that the characteristic values must be supplied for the tuner. A Tuner using Fuzzy Logic(FLT1 is capable of showing presentlpast states of a process control system and finding gains of PI controllers. The verfication of the FLT is shown by various experiments.

  • PDF

A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives (터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구)

  • Han,Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.61-71
    • /
    • 2003
  • In the study of control technique for a turbojet engine model, the Takagi-Sugeno fuzzy logic controller has been designed based on the model identification by the well designed PI controlled system through T-S neuro-fuzzy inference system. To enhance this designed controller, those procedures are proposed that certainty factors are adopted to each rule of objective groups which are classified by the fuzzy C-Means algorithm and the satisfaction degrees are matched to meet the objectives. This proposed technique shows its feasibility by upgrading performances of the previously well-designed T-S fuzzy controller.

A Study on Idle Speed Control Using Fuzzy Logic (퍼지 논리를 이용한 공회전 속도 제어에 관한 연구)

  • Ko, D.W.;Lee, Y.N.;Lee, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.23-29
    • /
    • 1994
  • The design procedure for fuzzy logic controller depends on the expert's knowledge or trial and error. Moreover, it is very difficult to guarantee the stability and robustness of the system due to the linguistic expression of fuzzy control. However, fuzzy logic control has succeeded in many control problems that the conventional control theory has difficulties to deal with. As a result, this control theory is applied to the engine control system which a mathematical model is difficult. In this study, the fuzzy logic is applied to obtain the gain of PI control at idle speed control system, and a simple engine model is developed in order to perform simulation. Experimental results show that the response to reach the target engine speed at idle speed control system is improved by adopting the gain obtained with fuzzy logic.

  • PDF

The Design of a Robust Self-Tuning Controller using PI-Type Fuzzy Controllers (PI형 퍼지제어기를 이용한 강인한 자기동조 시스템 설계)

  • 김민정;강신출;이인용;박재형;최부귀;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.497-505
    • /
    • 2000
  • 퍼지 논리 제어기(FLC)는 복잡한 프로세스와 비선형 프로세스와 비선형 프로세스에 사용되기 위해 연구되어져왔다. PI형 퍼지 제어기는 가장 보편적이고 실용적이다. 그러나 종래의 PI형 퍼지 제어기들은 큰 불감대를 가진 시스템이나 비선형 시스템에 대해 큰 오버슛과 과도한 발진으로 인해 불안정하다. 본 논문에서는 PI형 퍼지 제어기에서 제어 입력의 축적에 의해 야기된 오버슛을 제거하기 위한 관점에서, 두 개의 퍼지 제어기를 사용하여 좋은 성능을 이루기 위해, 직접적인 성능치로부터가 아니라, 현재의 프로세스 경향에만 의존하여, 조정하는 제어동작들을 발생하는 자기 동조 메카니즘을 사용하였다. 시뮬레이션 결과, 비선형 프로세스뿐만 아니라 선형의 다양한 형태를 갖는 프로세스에서 제안된 PI형 퍼지 제어기가 종래의 제어기의 성능을 능가한다는 것을 보여준다.

  • PDF

Surge Control of Small Turbojet Engines with Fuzzy Inference Method (소형 터보제트 엔진의 서지 제어를 위한 퍼지추론 기법)

  • Jie, Min-Seok;Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • The surge control system in unmanned turbojet engine must be capable of accounting uncertainties from engine transient conditions, random fluctuations of key parameters such as air pressure and fuel flow and engine modeling errors. In this paper, taking into consideration of its effectiveness as well as system stability, a fuzzy PI controller is proposed. The role of the fuzzy PI controller is to stabilize the unmanned aircraft upon occurring unexpected engine surge. The proposed control scheme is proved by computer simulation using a linear engine model. The simulation results on the state space model of a small turbojet engine illustrate the proposed control system achieves the desired performance.

  • PDF

A Study on the Gain Tuning of Fuzzy Logic Controller Superior to PI Controller in DC Motor Speed Control (직류 전동기 속도 제어에서 PI 제어기보다 우수한 퍼지 논리 제어기의 이득 선정을 위한 연구)

  • Kim, Young-Real
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.30-39
    • /
    • 2014
  • Through a lot of papers, it has been concluded that fuzzy logic controller is superior to PI controller in motor speed control. Although fuzzy logic controller is superior to PI controller in motor speed control, the gain tuning of fuzzy logic controller is more complicated than that of PI controller. In this paper, using mathematical analysis of the PI and fuzzy controller, the design method of the fuzzy controller that has the same characteristics with the PI controller is proposed. After that, we can design the fuzzy controller that has superior performance than PI controller by changing the envelope of input of fuzzy controller to nonlinear, because the fuzzy controller has more degree of freedom to select the control gain than PI controller. The advantage of fuzzy logic controller is shown through mathematical analysis, and the simulation result using Matlab simulink has been proposed to show the effectiveness of these analysis.

Multi-Channel Active Noise Control System Designs using Fuzzy Logic Stabilized Algorithms (퍼지논리 안정화알고리즘을 이용한 다중채널 능동소음제어시스템)

  • Ahn, Dong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3647-3653
    • /
    • 2012
  • In active noise control filter, IIR filter structure which used for control filter assures the stability property. The stability characteristics of IIR filter structure is mainly determined by pole location of control filter within unit disc, so stable selection of the value of control filter coefficient is very important. In this paper, we proposed novel adaptive stabilized Filtered_U LMS algorithms with IIR filter structure which has better convergence speed and less computational burden than conventional FIR structures, for multi-channel active noise control with vehicle enclosure signal case. For better convergence speed in adaptive algorithms, fuzzy LMS algorithms where convergence coefficient computed by a fuzzy PI type controller was proposed.