• 제목/요약/키워드: ${\mathbb{Z}}_p{\mathbb{Z}}_p[u]$/<$u^k$>-cyclic codes

검색결과 1건 처리시간 0.014초

ON ℤpp[u]/k>-CYCLIC CODES AND THEIR WEIGHT ENUMERATORS

  • Bhaintwal, Maheshanand;Biswas, Soumak
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.571-595
    • /
    • 2021
  • In this paper we study the algebraic structure of ℤpp[u]/k>-cyclic codes, where uk = 0 and p is a prime. A ℤpp[u]/k>-linear code of length (r + s) is an Rk-submodule of ℤrp × Rsk with respect to a suitable scalar multiplication, where Rk = ℤp[u]/k>. Such a code can also be viewed as an Rk-submodule of ℤp[x]/r - 1> × Rk[x]/s - 1>. A new Gray map has been defined on ℤp[u]/k>. We have considered two cases for studying the algebraic structure of ℤpp[u]/k>-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) ≠ 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ℤpp[u]/k>-linear codes. Examples have been given to construct ℤpp[u]/k>-cyclic codes, through which we get codes over ℤp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.