• Title/Summary/Keyword: ${\gamma}-irradiation$

Search Result 1,625, Processing Time 0.031 seconds

Hygienic Quality and Safety of Gamma Irradiated Angelicae Gigantis Radix and Aloe (감마선조사에 의한 당귀와 알로에의 위생화 및 안전성 평가)

  • 강일준;이수용;이상준;김광훈;이병훈
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.55-60
    • /
    • 1997
  • Gamma irradiation was applied to Angelicae gigantis radix and Aloe to improve their hygienic quality. The effective dose of irradiation was 7 kGy in Angelicae gigantis radlx and 5 kGy in Aloe for the sterilization of all contaminated microorganisms tested. After 8 months of storage at room temperature, no growth of microorganisms was observed in the irradiated products. The safety of these products were evaluated by Salmonella typhimurium reversion assay and in vivo micronucleus assay using mouse bone marrow cells. They were negative in the bacterial reversion assay with S. typhimurium TA 98, TA100, TA1535 and TA1537. In the in vivo mouse micronucleus assay, they did not show any clastogenic effect at all doses tested. These results indicate that the gamma irradiation of Angelicae gigantis radix at 12 kGy and of Aloe at 10 kGy have no genotoxic effects under these experimental conditions.

  • PDF

Effect of Gamma Irradiation on Shelf Life of Pork Loin (감마선 조사가 돈육의 저장성에 미치는 영향)

  • 변명우;조옥기;이주운;김재훈;김경표;김영지
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.16-22
    • /
    • 1999
  • Microbial populations (total bacteria, lactic acid bacteria and coliforms), TBA, VBN and POV were investigated for evaluating the shelf life of pork loins gamma-irradiated at doses of 1, 3, 5 and 10 kGy with air-contained and vacuum-packaged methods. The initial microbial populations decreased with gamma irradiation depending upon the dose and microorganisms in the vacuum-packaged samples were inhibited more than those in the air-contained samples. POV, TBA and VBN values were higher in the air-contained samples than in the vacuum-packaged samples. In conclusion, the combination of gamma-irradiation and vacuum-packaging could extend the shelf life of chilled pork loin.

  • PDF

Effects of gamma-irradiation on the infectivity and chromosome aberration of Clonorchis sinensis

  • Park, Gab-Man;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • Effects of gamma irradiation on the worm survival and chromosomal aberration of Clonorchis sinensis were studied. The metacercariae irradiated with various amounts of gamma radiation (ranging from 5 Gy to 50 Gy) were fed to rats, and the effects were compared with those of non-irradiated controls. Recovery rates of adult worms in irradiated groups were reduced gradually as increasing of the irradiation doses. No worm was recovered from rats which were fed with 50 Gy irradiated metacercariae. The chromosome number was 2n = 56 in all worms from all experimental groups. However, the groups irradiated with 20 Gy, 25 Gy or 30 Gy showed variations in the chromosome number, depending on different cells in the same individual. Radiation doses used in this study did not appear to induce chromosome aberrations, however, irradiation with 30 Gy showed slightly reduced chromosome size.

Structural Changes of Polyvinylidene fluoride with $^{60}Co$ $\gamma-ray$ Irradiation (Polyvinylidene fluoride의 $^{60}Co$감마선 조사에 의한 구조 변화)

  • Lee Chung;Kim Ki-Yup;Ryu Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.26-31
    • /
    • 2004
  • The radiation-induced changes taking place in poly(vinylidene fluoride) (PVDF) exposed to $^{60}Co$ $\gamma-ray$ irradiation were investigated in correlation with the applied doses. Samples were irradiated in air at room temperature by $^{60}Co$ $\gamma-ray$ to doses in the range of 200 to 1000kGy. Various properties of the irradiated PVDF were studied using FTIR, differential scanning calorimetry (DSC), gel fraction and elongation. $^{60}Co\gamma-ray$ irradiation was found to induce changes in chemical, thermal, mechanical and structural properties of PVDF and such changes vary depending on the radiation dose.

Changes of Ascorbic Acid Contents Induced from Gamma Irradiation, Heating and Microwave Treatments (방사선 조사, 가열 및 마이크로웨이브처리에 따른 Ascorbic Acid의 함량변화)

  • 변명우;이인숙;이경행;육홍선;강근옥
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.954-957
    • /
    • 1999
  • The changes in L ascorbic acid content by processing treatments; gamma irradiation, heating and microwave were investigated using high performance liquid chromatography. The content of L ascorbic acid in standard solutions and citrus fruits decreased from 27.4 to 44.9% and from 6.9 to 21.9%, re spectively, by gamma irradiation doses in the range of 1 to 10 kGy. By heating treatments, L ascorbic acids in standard solutions and citrus fruits were destroyed 22.5 to 36.8% and 4.5 to 18.1%, respectively. By microwave treatment, L ascorbic acid content also decreased from 23.1 to 47.4% and from 6.5 to 22.6%, respectively.

  • PDF

Induction and Selection of Citrus Mutant by Gamma-Irradiation (감마선조사를 통한 돌연변이 궁천조생 감귤 가지 유도 및 선발)

  • Kim, In-Jung;Oh, Seung Kyu;Lee, Hyo Yeon
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.215-219
    • /
    • 2010
  • We have subjected to gamma-irradiation to citrus buds and then grafted onto mature citrus tree. Mutant citrus branch lines have been induced. As a result of first selection, we found the several mutant lines showing interesting phenotypes such as higher sugar content. We have selected several branches showing good qualities such as higher sweetness and/or lower acidity. Some branch lines showed over $13^{\circ}Brix$ sugar content and below 0.9% acidity. Other mutant branch lines showed the changes of shape, size, peel thickness, and fiber contents or distribution of fruits. The results suggest that gamma-irradiation is an effective tool for induction of citrus mutant lines.

Molecular Weight Control of Chitosan Using Gamma Ray and Electron Beam Irradiation

  • Kim, Hyun Bin;Lee, Young Joo;Oh, Seung Hwan;Kang, Phil Hyun;Jeun, Joon Pyo
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.51-54
    • /
    • 2013
  • Chitosan is a useful natural polymer material in many application fields such as biomaterials, water-treatment, agriculture, medication, and food science. However, the poor solubility limits its application. In this study, the effects of radiation on chitosan were investigated using gamma ray and electron beam irradiation. The chemical structure and molecular weight analysis show similar degradation effects of chitosan powder in both gamma ray and electron beam irradiation. However, the radiation irradiated chitosan in $H_2O$ has a lower molecular weight, since the hydroxyl radicals attack the glycosidic bonds. This effect is more clearly shown in the electron beam irradiation results.

Development of Pyropia yezoensis Mutant with Improved Amino Acid Content Using Gamma Rays (방사선 돌연변이 육종기술을 통한 고 아미노산 함유 김(Pyropia yezoensis) 돌연변이 개발)

  • Lee, Hak-Jeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.982-988
    • /
    • 2021
  • Gamma irradiation is one of the simple methods used to induce mutagenesis. Therefore, it is widely used for the development of breeding lineages of plants and algae. In this study, it was developed a new variety of Pyropia yezoensis using gamma irradiation. It was applied a dose of 1 kGy and named the developed mutant Py1k. The blade with width of the mutant was narrower and the blade length was longer than those of the wild type. To further investigate the mutant, it was analyzed the nutrient composition and antioxidant activity. In comparison to those in the wild type, it was found a higher amino acid composition and marginally increased antioxidant activity in Py1k. Based on these results, it was suggests that our protocol can be utilized to develop Pyropia species with improved nutritional quality through gamma irradiation.

Efficient Storage of Gorosoe(Acer mono Max.) Sap by Gamma Irradiation (감마선 조사에 의한 고로쇠 수액의 효율적인 저장방법)

  • Seo, Sang-Tae;Oh, Hye-Young;Kang, Ha-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2010
  • Effects of gamma irradiation on microbiological changes of Gorosoe sap were characterized during a post-irradiation storage at $4^{\circ}C$. The aseptically collected sap was irradiated and stored at $4^{\circ}C$ for 0 to 60 days and analysed for standard plate counts and 16S rDNA. There were significant differences in the total number of colony forming units(CFUs) of bacteria between irradiated and non-irradiated control sap. Bacteria of non-irradiated sap were present at levels of $1.5{\times}10^4{\sim}2.3{\times}10^8\;CFU/m{\ell}$, whereas no viable microbial cells were detected in sap after 10 kGy of irradiation during storage. According to the 16S rDNA sequence analysis, bacterial community structures decrease with time and the most abundant strain was Pseudomonas species. Our results suggested that gamma irradiation can be used to enhance the shelf-life of Gorosoe sap.

Comparison on Inactivation of Enterobacter sakazakii, Salmonella typhimurium, and Bacillus cereus Inoculated on Infant Formula During Storage by Gamma Irradiation

  • Jin, You-Young;Ku, Kyung-Ju;Park, Ji-Yong;Park, Jong-Hyun;Chung, Myong-Soo;Kwon, Ki-Sung;Chung, Kyung-Sook;Won, Mi-Sun;Song, Kyung-Bin
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.861-864
    • /
    • 2008
  • Enterobacter sakazakii, Salmonella typhimurium. and Bacillus cereus were evaluated on inoculated infant formula by gamma irradiation treatment as a method to provide microbial safety. The infant formula inoculated with the major pathogenic bacteria was treated at irradiation dose of 0, 3, 5, and 10 kGy, respectively. After treatment, the samples were individually packaged and stored at $20^{\circ}C$. Microbiological data during storage represented that the populations of E. sakazakii, S. typhimurium, and B. cereus were reduced with the increase of irradiation dose by 4 to 5 log reductions. In particular, E. sakazakii, S. typhimurium. and B. cereus were eliminated at 10, 5, and 3 kGy, respectively. E. sakazakii was the most radiation-resistant, while B. cereus was the least. Our results represent that gamma irradiation below 10 kGy should eliminate the growth of the major pathogenic bacteria in infant formula during storage.