• Title/Summary/Keyword: ${\gamma}-C_2S$ 합성

Search Result 37, Processing Time 0.025 seconds

Growth and Photocurrent Properties of CdIn2S4/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy 법에 의한 CdIn2S4 단결정 박막의 성장과 광전류 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon;Park, Jin-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.309-318
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdIn_2S_4$ single crystal thin films measured with Hall effect by van der Pauw method are $9.01{\times}10^{16}\;cm^{-3}$ and $219\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7116\;eV-(7.74{\times}10^{-4}\;eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasi cubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K areascribed to the $A_1$-, $B_1$-, and C1-exciton peaks for n = 1.

Overexpression of TMP21 Could Induce not only Downregulation of TrkA/ERK Phosphorylation but also Upregulation of p75NTR/RhoA Expression on NGF Receptor Signaling Pathway (γ-Secretase 활성억제단백질인 TMP21의 과발현이 신경세포주에서 NGF 수용체 신호전달과정에 미치는 영향)

  • Choi, Sun-Il;Jee, Seung-Wan;Her, Youn-Kyung;Kim, Ji-Eun;Nam, So-Hee;Hwang, In-Sik;Lee, Hye-Ryun;Goo, Jun-Seo;Lee, Young-Ju;Lee, Eon-Pil;Choi, Hae-Wook;Kim, Hong-Sung;Lee, Jae-Ho;Jung, Young-Jin;Lee, Su-Hae;Shim, Sun-Bo;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1134-1141
    • /
    • 2011
  • Transmembrane protein 21 (TMP21) is a member of the p24 cargo protein family and has been shown to modulate ${\alpha}$-secretase-mediated A${\beta}$ production which was specifically observed in the brains of subjects with Alzheimer's disease (AD). In order to investigate whether TMP21 could affect nerve growth factor (NGF) receptor signaling pathway, the alteration of NGF receptors and their downstream proteins were detected in TMP21 over-expressed cells. CMV/hTMP21 vector used in this study was successfully expressed into TMP21 proteins in B35 cells after lipofectamin transfection. Expressed TMP21 proteins induced the down-regulation of ${\gamma}$-secretase complex components including Presenlin-1 (PS-1), PS-2, Nicastrin (NST), Pen-2 and APH-1. Also, the expression level of NGF receptor $p75^{NTR}$ and RhoA were significantly higher in CMV/hTMP21 transfectants than vehicle transfectants, while their levels returned to vehicle levels after NGF treatment. However, the phosphorylation of NGF receptor TrkA was dramtically decreased in NGF No-treated CMV/hTMP21 transfectants compared with vehicle transfectants, and increased in NGF treated CMV/hTMP21 transfectants. In TrkA downstream signaling pathway, the phosphorylation level of ERK was also decreased in CMV/hTMP21 transfectants, while the phosphorylation of Akt was increased in the same transfectants. Furthermore, NGF treatment induced the increase of phosphorylation level of Akt and ERK in CMV/hTMP21 transfectants. Therefore, these results suggested that over-expression of TMP21may simultaneously induce the up-regulation of $p75^{NTR}$/RhoA expression and the down-regulation of TrkA/ERK phosphorylation through the inhibition of ${\gamma}$-secretase activity.

Growth and optical conductivity properties for MnAl2S4 single crystal thin film by hot wall epitaxy method (Hot Wall Epitaxy(HWE)법에 의한 MnAl2S4 단결정 박막 성장과 광전도 특성)

  • You, Sangha;Lee, Kijeong;Hong, Kwangjoon;Moon, Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.229-236
    • /
    • 2014
  • A stoichiometric mixture of evaporating materials for $MnAl_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MnAl_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MnAl_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.7920eV-5.2729{\times}10^{-4}eV/K)T^2/(T+786 K)$. In order to explore the applicability as a photoconductive cell, we measured the sensitivity (${\gamma}$), the ratio of photocurrent to dark current (pc/dc), maximum allowable power dissipation (MAPD) and response time. The results indicated that the photoconductive characteristic were the best for the samples annealed in S vapour compare with in Mn, Al, air and vacuum vapour. Then we obtained the sensitivity of 0.93, the value of pc/dc of $1.10{\times}10^7$, the MAPD of 316 mW, and the rise and decay time of 14.8 ms and 12.1 ms, respectively.

Photocurrent study on the splitting of the valence band and growth of $Cdln_2Te_4$ single crystal by Bridgman method (Bridgman법에 의한 $Cdln_2Te_4$단결정의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • 홍광준;이관교;이봉주;박진성;신동찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The $CdIn_2Te_4$ single crystal was evaluated to be tetragonal by the power method. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61\times 1016 \textrm {cm}^{-3}$ and 242 $\textrm{cm}^2$/V.s at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $1.4750ev - (7.69\times10^{-3})\; ev/k)\;T^2$/(T + 2147k).The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2Te_4$ single crystal have been estimated to be 0.2704 eV and 0.1465 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the $\Gamma_7$ states of the valence band of the $CdIn_2Te_4$ single crystal. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-} B_{1-}$ and Cl-exciton peaks for n = 1.

Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.217-224
    • /
    • 2008
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41\times10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.8622eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2Se_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnIn_2Se_4/GaAs$ epilayer. The three photo current peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-exciton$ for n = 1 and $C_{27}-exciton$ peaks for n = 27.

Effect of target cell nitric oxide synthesis on the sensitivity to lymphokine-activated killer cell cytotoxicity (표적세포의 Nitric oxide 합성이 LAK 세포의 세포독성에 대한 예민도에 미치는 영향)

  • Park, Sung Il;Park, Ju Hyung;Lee, Chi Kug;Kim, Shin Chae;Choi, Bo Geum;Kwak, Jae Yong;Yim, Chang Yeol
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.162-169
    • /
    • 2001
  • Background: Nitric oxide (NO), a cytotoxic molecule is produced in various tissues including tumor cells during interleukin-2 (IL-2) therapy . Lymphokine-activated killer (LAK) cells are induced during IL-2 therapy, and have cytotoxic activity against tumor cells. The current study investigated the effects of NO synthesized in target cells or exposure of target cells to NO on the sensitivity of target cells to LAK cell cytotoxicity. Methods: Cytotoxicity was measured using 4 h chromium release assays. LAK cells which were induced by a 4 day incubation of BALB/c mouse splenocytes with IL-2 (6,000 IU/mL) were employed as effector cells. RD-995 skin tumor cells originated from a C3H/HeN mouse were employed as target cells. NO synthesis in target cells was induced by a 24 h incubation of RD-995 cells with $IFN{\gamma}$ (25 U/mL), TNF (50 U/mL) and IL-1 (20 U/mL). S-nitrosyl acetylpenicillamine (SNAP), an NO donor, was used to expose target cells to NO. $N^G$-monomethyl-L-arginine (MLA) and carboxy-PTIO were added during cytotoxicity assays to inhibit NO synthesis, and to scavenge NO produced by target cells, respectively. Results: Sensitivity of NO-producing RD-995 cells to LAK cell cytotoxicity was decreased by addition of MLA and carboxy-PTIO during cytotoxicity assays. However, the two reagents had no effect on the sensitivity of non-NO-producing RD-995 cells. Pretreatment of RD-995 target cells with SNAP increased the sensitivity in comparison with untreated cells. Conclusions: Sensitivity of target cells to LAK cell cytotoxicity is increased by target cell NO synthesis or exposure to NO. Further studies are needed to evaluate whether these in vitro results have relevance to in vivo phenomena.

  • PDF

Photocurrent study on the splitting of the valence band and growth of MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 MgGa2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Kim, Hyejeong;Park, Hwangseuk;Bang, Jinju;Kang, Jongwuk;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.283-290
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34 eV-(8.81{\times}10^{-4}eV/K)T^2/(T+251K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $MgGa_2Se_4$ have been estimated to be 190.6 meV and 118.8 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $MgGa_2Se_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$exciton for n = 1 and $C_{27}-exciton$ peaks for n = 27.