• Title/Summary/Keyword: ${\gamma}{\delta}$ T lymphocytes

Search Result 6, Processing Time 0.018 seconds

The Clinical Significance of ${\gamma}{\delta}$ T lymphocytes in patients with pleural tuberculosis (결핵환자에서 말초혈액과 흉막액내 ${\gamma}{\delta}$ T 림프구의 의의)

  • Song, Kwang Seon;Shin, Kye Chul;Kim, Do Hun;Hong, Ae Ra;Kim, Hee Seon;Yong, Suk Joong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.1
    • /
    • pp.44-51
    • /
    • 1997
  • Background : The changes of the composition in the T-lymphocyte are important as an immunological abnormality in the pathogenesis of tuberculosis. Previously, the second type of TCR dimer(${\gamma}{\delta}$ T lymphocyte) that did not express CD4 or CD8 molecules was found. In other reports the presence of this type of lymphocytes was increased in the initial stage of tuberculous infections. Method : To determine whether there are some differences in the T-lymphocyte subsets in the peripheral blood or pleural effusion between pleural tuberculosis and other pleurisy. Thirty patients with pleural effusion among the forty-nine patients were examined T-lymphocyte subset analysis(CD4+T-cell,CD8+ T-cell,${\gamma}{\delta}$ T-lymphocytes) with anti- Leu4, anti-Leu3a, anti-Lea2a, anti HLA-DR and anti-TCR-${\gamma}{\delta}$-1(Becton & Dickinson Co.). Results : The average age of the patients was 50 years old(17-81year). There were 33 males and 16 female patients. Patiensts with tuberculosis are 30cases(tuberculous pleurisy 15), lung cancer 12cases(malignant effusion 9) and pneumonia 7cases(parapneumonic effusion 6cases) In T lymphocyte subsets of pleural effusion, helper T lymphocyte(54.6 + 13.8 %) of tuberculous pleurisy was higher than that(36.2 + 25.3 %) of non-tuberculous pleurisy(p=0.04). The peripheral blood ${\gamma}{\delta}$ T-lymphocytes in tuberculousis was insignificantly higher than non-tuberculous patients(p= 0.24). The peripheral blood ${\gamma}{\delta}$ T-lymphocytes and pleural ${\gamma}{\delta}$ T-Iymphocytes in tuberculous pleurisy was insignificantly higher than in non-tuberculous pleurisy(p= 0.16, p= 0.12). Conclusion : The percentage of -${\gamma}{\delta}$ T lymphocytes among the total T-lymphocytes is not significantly increased in the peripheral blood or pleural effusion of the pleural tuberculosis. ${\gamma}{\delta}$ T lymphocytes is less useful as a diagnostic method of pleural tuberculosis.

  • PDF

The Distribution of ${\gamma}{\delta}$ T Cells in Tuberculous Lymphadenopathy (결핵성 림프절에서 ${\gamma}{\delta}$ T 림프구의 분포에 관한 연구)

  • Shim, Tae-Sun;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.484-488
    • /
    • 1994
  • Background : The antigen-specific receptor on the surface of most peripheral T lymphocytes is a disulfide-linked heterodimer composed of $\alpha$ and $\gamma$ subunits, noncovalently associated with CD3 polypeptides. Recently, a novel type of CD3-associated heterodimer was described on a T cell subset that does not express CD4 or CD8 molecules. This second type of TCR dimer is composed of chains encoded for by the $\gamma$- and $\delta$-TCR genes. These cells may exert both cytotoxic and lymphokine producing functions. Although it was reported that some ${\gamma}{\delta}$-TCR might recognize an MHC-linked determinant, the funεtion or physiologic ligand for this new receptor is not yet clear. It was found that ${\gamma}{\delta}$-TCR can react with 65 kD heat shock protein of M. tuberculosis, which suggests the possible protective role of ${\gamma}{\delta}$ T lymphocytes against tuberculosis. In our previous study, there was neither the increase in number nor the functional activation of ${\gamma}{\delta}$ T cells in the peripheral blood from patients with pulmonary tuberculosis. Now we report the distribution of ${\gamma}{\delta}$ T cells in the regional sites of M. tuberculosis infection, especial1y tuberculous lymphadenitis. Methods : Lymph nodes from patients with pathologically-proven tuberculous lymphadenopathy (n=5) and reactive hyperplasia (n=3) were used. Tissues were frozen in liquid nitrogen immediately after removal and stored below $-70^{\circ}C$. The cryostat sections of these frozen specimens were stained with anti-Leu-4 Ab, Identi-T TCR ${\delta}1$, and Identi-T ${\beta}F1$. The number of positively stained cells were counted at high power field. Results : The infiltration of ${\gamma}{\delta}$ T cells was significantly higher in the lymph nodes from patients with tuberculous lymphadenopathy than that with reactive hyperplasia ($16.3{\pm}10.3%$ vs. $1.7{\pm}1.5%$). Conclusion : These results suggest that ${\gamma}{\delta}$) T cells may play a role in the defense against M. tuberculosis infection, especially in the regional sites of infection.

  • PDF

T cell phenotype and intracellular $IFN-{\gamma}$ production in peritoneal exudate cells and gut intraepithelial lymphocytes during acute Toxoplasma gondii infection in mice

  • Lee, Young-Ha;Shin, Dae-Whan
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.3
    • /
    • pp.119-129
    • /
    • 2002
  • Although there are many reports on the splenic (systemic) T cell response after Toxoptasma gondii infection, little information is available regarding the local T cell responses of peritoneal exudate cells (PEC) and gut intraepithelial Iymphocytes (IEL) following peroral infection with bradyzoites. Mice were infected with 40 cysts of the 76K strain of T. gondii, and then sacrificed at days 0, 1, 4, 7 and 10 postinfection (PI). The cellular composition and T cell responses of PEC and IEL were analyzed. The total number of PEC and IEL per mouse increased after infection, but the ratio of increase was higher in IEL. Lymphocytes were the major component of both PEC and IEL. The relative percentages of PEC macrophages and neutrophils/eosinophils increased signiflcantly at day 1 and 4 PI, whereas those of IEL did not change significantly. The percentage of PEC NK1.1 and ${\gamma\delta}T$ cells peaked at day 4 PI (p < 0.0001), and CD4 and $CD8{\alpha}T$ cells increased continuously after infection. The percentages of IEL $CD8{\alpha}$ and ${\gamma\delta}T$ cells decreased slightly at first, and then increased. CD4 and NK1.1 T cells of IEL did not change significantly after infection. $IFN-{\gamma}-producing$ PEC NK1.1 T cells increased significantly from day 1 PI, but the other T cell subsets produced $IFN-{\gamma}$ abundantly thereafter. The proportion of IEL $IFN-{\gamma}-producing$ $CD8{\alpha}$ and ${\gamma\delta}T$ cells increased significantly after infection, while IEL NK1.1 T cells had similar $IFN-{\gamma}$ production patterns. Taken together, CD4 T cells were the major phenotype and the important $IFN-{\gamma}$ producing T cell subsets in PEC after oral infection with T. gondii whereas $CD8{\alpha}T$ cells had these roles in IEL. These results suggest that PEC and IEL comprise different cell differentials and T cell responses, and according to infection route these factors may contribute to the different cellular immune responses.

Phenotypical changes of lymphocyte subsets infiltrated in the skin lesions induced experimentally by very virulent strain of Marek's disease virus in chickens (마렉병 바이러스 강독주의 실험 접종에 의해 유발된 닭 피부병변에 침윤한 림프구 표현형의 변화)

  • Cho, Kyoung-Oh
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.373-380
    • /
    • 2001
  • Marek's disease virus (MDV) can cause skin lesions including inflammatory to tumorous. The phenotypical changes of lymphocytes infiltrating in the skin lesions induced by MDV were not clear. Therefore, the skin biopsies taken at weekly intervals for 8 weeks from the same specific-pathogen free chickens inoculated with Md/5 MDV were examined to analysis the phenotypical changes of lymphocytes. Histologically skin lesions progressed from initial inflammatory to late tumorous. Sequentially CD4+ T lymphocytes increased gradually in number from initial skin lesions and were major composition cells in the tumor lesions. Regardless of inflammatory or tumor lesions, CD8+ T cells and ${\gamma}{\delta}$ T cells infiltrated particularly in the dermis and subcutaneous on which MDV was actively replicated in the feather follicle epithelium(FFE). In addition, IgG bearing B lymphocytes in considerable number infiltrated in the dermis and subcutaneous tissues. From these results, the development of MDV-induced skin lesions was inflammatory following tumorous. In addition, each CD8+, ${\gamma}{\delta}$ and CD4+ T cells and B cell might act to protect MDV replication in the FFE or tumor cells which turned on lytic cycle.

  • PDF

Low Counts of γδ T Cells in Peritumoral Liver Tissue are Related to More Frequent Recurrence in Patients with Hepatocellular Carcinoma after Curative Resection

  • Cai, Xiao-Yan;Wang, Jia-Xing;Yi, Yong;He, Hong-Wei;Ni, Xiao-Chun;Zhou, Jian;Cheng, Yun-Feng;Jin, Jian-Jun;Fan, Jia;Qiu, Shuang-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.775-780
    • /
    • 2014
  • Objectives: TCR-gamma-delta+T cells (${\gamma}{\delta}$ T cells) are non-conventional T lymphocytes that can recognize and eradicate tumor cells. Our previous studies showed that infiltration and function of ${\gamma}{\delta}$ T cells were substantially attenuated in hepatocellular carcinoma (HCC). However, their prognostic value was not clarified. Methods: The association between ${\gamma}{\delta}$ T cells and the clinical outcomes was determined by immunohistochemistry (IHC) in a HCC patient cohort (n = 342). Results:Immunohistochemistry showed decreased infiltration of ${\gamma}{\delta}$ T cells in tumoral tissues compared with paired peritumoral tissues. The counts of ${\gamma}{\delta}$ T cells in peritumoral tissues were negatively correlated with tumor size (P = 0.005). Survival analysis showed that the levels of peritumoral ${\gamma}{\delta}$T cells were related to both time to recurrence (TTR) and overall survival (OS) (P = 0.010 and P = 0.036, respectively) in univariate analysis, and related to TTR in multivariate analysis (P = 0.014, H.R. [95% CI] = 0.682 [0.502-0.927]). Furthermore, the level of peritumoral ${\gamma}{\delta}$ T cells showed independent prognostic value for TTR in Barcelona Clinic Liver Cancer (BCLC) stage A patients (P = 0.038, H.R. [95% CI] = 0.727 [0.537-0.984]). However, tumoral ${\gamma}{\delta}$ T cells did not show independent prognostic value for either TTR or OS in HCC patients. Conclusions: Low counts of ${\gamma}{\delta}$ T cells in peritumoral liver tissue are related to a higher incidence of recurrence in HCC and can predict postoperative recurrence, especially in those with early-stage HCC.

Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity

  • Hye Won Lee;Yun Shin Chung;Tae Jin Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.5.1-5.15
    • /
    • 2020
  • The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.