• Title/Summary/Keyword: ${\gamma}^{{\prime}{\prime}}$ strengthening

Search Result 5, Processing Time 0.019 seconds

Effect of Heat Treatment on the Microstructures of Inconel 718 Superalloy (INCONEL 718 초내열 합금의 열처리에 따른 미세조직 변화)

  • Choi, J.H.;Lee, K.R.;Jo, C.Y.;Kim, I.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • Microstructural evolution of wrought Inconel 718 superalloy with different heat treatment conditions was studied. Heat treatment was performed via conventional(CHT), modified(MHT), Merrick(MeHT) and modified Merrick (MMeHT) methods. The size of ${\gamma}^{\prime}$ and ${\gamma}^{\prime\prime}$ precipitates which are principal strengthening phases in Inconel 718 superalloy increase in order of CHT, MHT, MeHT. For the case of MMeHT, a coexistence of fine ${\gamma}^{\prime\prime}$ precipitate and very coarse particles due to exess growth of ${\gamma}^{\prime\prime}$, which is called bimodal distribution, was observed. CHT gave the finest grain size. (Ti, Nb)C carbide and needle-like ${\delta}$ phase were formed together at grain boundaries for CHT, and were formed both inside and at boundaries of grains for MHT, MeHT and MMeHT. Morphology of partially serrated grain boundaries was developed in all heat treatment conditions except CHT.

  • PDF

Strengthening Mechanism of the Ni3Al-based Alloy (Ni3Al계 합금의 강화기구)

  • Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Strengthening mechanisms in an ordered intermetallic compound containing coherent precipitates of lower antiphase boundary energy than the matrix were investigated on the basis of the interaction between the deformation induced dislocations and the disordered precipitates in an $Ll_2$ ordered $Ni_3Al$-based alloy. Extra work was needed to pull out the dislocations from the precipitate, which was dependent on the difference in the antiphase boundary energy between the matrix and the precipitate, as well as the size and volume fraction of the precipitate. The strength of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase containing fine precipitates of the disordered ${\gamma}$ phase was examined using the proposed model. The model can explain almost quantitatively the age hardening behavior of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase.

Effect of Heat-treatment on Microstructure and Tensile Properties in Cast Alloy 718 (주조 합금 Alloy 718에서 미세조직과 인장특성에 미치는 열처리의 영향)

  • Do, Jeong-Hyeon;Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.36 no.5
    • /
    • pp.167-173
    • /
    • 2016
  • The effect of various types of heat-treatment on the mechanical properties of cast Alloy 718 has been investigated. Cast Alloy 718 bars were subjected to 'standard heat-treatment'_(SHT), 'HIP (Hot Isostatic Pressing) heat-treatment'_(HHT), and 'HIP-simulated heat-treatment'_(HS). In the absence of long time high temperature heat-treatment, a small amount of Laves phase remained in the 'SHT' specimen, and needle shaped ${\delta}$ precipitated in the vicinity of the Laves phase. Due to the formation of the Laves and ${\delta}$ phases in the 'SHT' specimen, it exhibited lower tensile properties than those of the others_specimens. On the other hand, the Laves phase was completely dissolved into the matrix after 'HHT' and 'HS' treatments. It is known that isostatic pressure reduces the self-diffusion coefficient, because of the lower self-diffusivity under HIP conditions in the interdendritic region, Nb segregation and the high amount of ${\gamma}^{{\prime}{\prime}}$ precipitation that occurs. Due to the higher fraction of coarse ${\gamma}^{{\prime}{\prime}}$ phases, the 'HHT' treated Alloy 718 showed excellent tensile strength.

Alloy Design and Properties of Ni based Superalloy LESS 1: I. Alloy Design and Phase Stability at High Temperature (Ni기 초내열 합금 LESS 1의 합금설계 및 평가: I. 합금 설계 및 고온 상 안정성 평가)

  • Youn, Jeong Il;Kang, Byung Il;Choi, Bong Jae;Kim, Young Jig
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.215-225
    • /
    • 2013
  • The alloys required for fossil power plants are altered from stainless steel that has been used below $600^{\circ}C$ to Ni-based alloys that can operate at $700^{\circ}C$ for Hyper Super Critical (HSC) steam turbine. The IN740 alloy (Special Metals Co. USA) is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at about $700^{\circ}C$ indicated the formation of the eta phase with the wasting of a gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys, and this resulted in the formation of precipitation free zones to decrease the strength. On the basis of thermodynamic calculation, the new Ni-based superalloy named LESS 1 (Low Eta Sigma Superalloy) was designed in this study to improve the strengthening effect and structure stability by depressing the formation of topologically close packed phases, especially sigma and eta phases at high temperature. A thermal exposure test was carried out to determine the microstructure stability of LESS 1 in comparison with IN740 at $800^{\circ}C$ for 300 hrs. The experimental results show that a needle-shaped eta phase was formed in the grin boundary and it grew to intragrain, and a precipitation free zone was also observed in IN740, but these defects were entirely controlled in LESS 1.