• Title/Summary/Keyword: ${\delta}^{15}N$ value

Search Result 56, Processing Time 0.018 seconds

Nitrate Concentration and ${\delta}^{15}N$ Value of the Groundwater in the Miyakojima Island, Okinawa Prefecture, Japan (일본(日本) 궁고도(宮古島)의 지하수중(地下水中)의 $NO_3-N$${\delta}^{15}N$치(値))

  • Park, Kwang-Lai;Kikuo, Kumazawa.
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.97-108
    • /
    • 1995
  • Nitrate concentration and ${\delta}^{15}N$ value in the groundwater in Miyakojima Island, Okinawa, were measured during 1992-1993. Water from the shallow and the deep wells at the ten separate sites were sampled. Mineral contents and natural nitrogen isotope abundance(${\delta}^{15}N$) were analyzed using a liquid chromatography and a mass spectrometry (Finnigan MAT 252). Except for waters which were directly influenced by sea water invasion, most of the groundwater showed small variations among their mineral contents and ${\delta}^{15}N$ values. The average nitrate nitrogen concentrations were $1.4{\sim}11.5mgL^{-1}$ and average ${\delta}^{15}N$ values were +4.3${\sim}$+9.7$%_o$. From the nitrate concentration and ${\delta}^{15}N$ value observed, the types of the groundwater could be categorized into four groups, such as high ${\delta}^{15}N$ and high nitrate, high ${\delta}^{15}N$ and medium nitrate, low ${\delta}^{15}N$ and medium nitrate, and low ${\delta}^{15}N$ and low nitrate, reflecting the main source of nitrate contamination, such as animal and domestic waste, animal waste and soil organic matter, soil organic matter and chemical fertilizer, and chemical fertilizer, respectively. It was discussed that the lowest ${\delta}^{15}N$ value was higher than the ${\delta}^{15}N$ value of the chemical fertilizers used in this island(-3.9${\sim}$-1.4$%_o$), then considerable amounts of nitrogen must be lost by ammonium evaporation or denitrification after fertilization.

  • PDF

Evaluation of Organic Matter Sources of Phytoplankton in Paldang Reservoir using Stable Isotope Analysis (팔당호 내 식물플랑크톤 안정동위원소 분석을 통한 유기물 기원 평가)

  • Kim, Jongmin;Kim, Bokyong;Kim, Minseob;Shin, Kisik
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • The organic matter sources of phytoplankton and related environmental factors influencing algal bloom in Paldang reservoir were studied using nitrogen and carbon isotope ratio(${\delta}^{15}N$, ${\delta}^{13}C$). Phytoplankton samples for stable isotope analysis were collected from four points in reservoir using a plankton net. Physicochemical water quality, algal taxa and hydrological data were collected from published monitoring material. Phytoplankton samples were analyzed by IRMS. CN ratio of each sample was very similar to that of phytoplankton from literature cited. ${\delta}^{15}N$ of each sample was decreased during July. Mixing and dilution of nitrogen sources due to increment of influx by concentrated rainfall were considered as the main reason for the decline of ${\delta}^{15}N$. Based on analyzed ${\delta}^{15}N$ value of each sample, nitrogen source of Bughan river sample was presumed to come from soil. The nitrogen sources of Namhan river and Kyeongan stream samples seemed to be sewage or animal waste. Low ${\delta}^{15}N$ value in August (2012) seemed to be influenced by isotope fractionation due to the blooming of nitrogen-fixation blue-green algae (Anabaena spp.). Variation in ${\delta}^{15}N$ values particularly by blue-green algal bloom was considered the important factor for estimating the organic matter sources of phytoplankton.

Determination of the Origin in both Dissolved Inorganic Nitrogen and Phytoplankton at the Lake Paldang using Stable Isotope Ratios (δ13C, δ15N, δ15N-NO3 and δ15N-NH4) (질산염 및 식물플랑크톤의 안정동위원소비를 이용한 팔당호 수계내의 질소원 기원 연구)

  • Kim, Min-Seob;Lee, Eun-Jeong;Yoon, Suk-Hee;Lim, Bo-La;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.452-458
    • /
    • 2017
  • The nitrogen isotope value in both ammonium and nitrate ion were determined at 9 stations during both June and August 2016, in order to understand the origin of DIN at the Han river. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in 8 stations (CP, SB, MHC, P4, SJ, SBC, P2, SC) were no significant variation. However ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in KK (Kyeongan stream) showed significant different in comparison with 8 stations, with an apparent increase of nitrogen isotope values. These results indicate that antropogenic nitrogen source influence on KK station. Also the ${\delta}^{13}C$ and ${\delta}^{15}N$ isotope ratio of phytoplankton (Diatom and Cyanobacteria) in KK (Kyeongan stream) showed heavier values, compared to other study stations. These results indicate that nitrogen isotope value in phytoplankton effects by different nitrogen source in study sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the identification of dissolved inorganic nitrogen origin in aquatic environments.

Nitrate Contamination of Confined Groundwaters: Application of Nitrogen, Oxygen, and Hydrogen Isotopes (피압대수층 지하수내 질소함유 원인연구: 질소, 산소, 수소동위원소 적용)

  • 추창오;이병대;조병욱;성익환;지세정
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.285-294
    • /
    • 2002
  • The origin of nitrate in confined groundwater was studied using oxygen ($\delta$180), hydrogen ($\delta$D), and nitrogen ($\delta$15N) stable isotopes, along with chemical data of NO3-N. We analyzed groundwaters from more than sixty manufactories producing natural mineral waters around the country During the period of 1998-2001, an average value of nitrate was fair]y low (0.95 mg/$\ell$), however, groundwaters from six sites showed more than 2 mg/$\ell$ of nitrate. The stable isotope data of the groundwaters are -8.3~-11 $\textperthousand$ $\delta$8O, -60~-75 $\textperthousand$ $\delta$D, which lies in an average range of the groundwaters. The nitrogen isotope data with -11.8~-5.1$\textperthousand$ $\delta$15N suggest that manure, organic nitrate, and fertilizers can not be the origin of nitrate in the goundwaters.

Concentrations and Natural 15N Abundances of NO3-N in Groundwater and Percolation Water from Intensive Vegetable Cultivation Area in Japan (일본 노지채소 집약 재배지역 토양 침출수 중의 NO3-N 농도와 질소 안정동위원소 자연존재비(δ15N))

  • Park, Kwang-Lai;Choi, Jae-Seong;Baek, Hyung-Jin;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Cho, Jin-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.119-126
    • /
    • 2003
  • Nitrate-N concentrations and the corresponding ${\delta}^{15}N$ values were determined with water samples collected periodically from artesian wells (3 and 6 m deep), underdrainage and gushout waters in a Welsh onion cultivated area in the Kushibiki Fan, Saitama Prefecture, Japan. Average $NO_3-N$ concentrations in waters from 3 and 6 m wells were 25.7 and $2.8mg\;L^{-1}$, whereas ${\delta}^{15}N$ values were 3.6 and 4.7‰, respectively. The $NO_3-N$ concentration and ${\delta}^{15}N$ value of the underdrainge water were $35.5mg\;L^{-1}$ and 6.6‰, reflecting rapid input of chemical fertilizers and farmyard manure. The mean values of $NO_3-N$ concentration and ${\delta}^{15}N$ in the gushout water flown out of the edge of Kushibiki Fan were $19.4mg\;L^{-1}$ and 7.9‰, respectively. As a results the ${\delta}^{15}N$ values of the gushout water were higher than those of the artesian wells and underdrinage water. The ${\delta}^{15}N$ values of total-N and $NO_3-N$ of the soils were 6.1 and 5.10‰, respectively, while those for nitrification-inhibitor containing fertilizer and slow-release fertilizers were -6.1 and -2.2‰, respectively.

Investigation of Nitrate Contamination Sources Under the Conventional and Organic Agricultural Systems Using Nitrogen Isotope Ratios (질소 동위원소비를 이용한 관행농업과 유기농업에서의 질산태 질소 오염원 구명)

  • Ko, H.J.;Choi, H.L.;Kim, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.481-490
    • /
    • 2005
  • Nitrate contamination in water system is a critical environmental problem caused by excessive application of chemical fertilizer and concentration of livestock. In order to prevent further contamination, therefore, it is necessary to understand the origin of nitrate in nitrogen loading sources and manage the very source of contamination. The objective of this study was to examine the nitrate contamination sources in different agricultural system by using nitrogen isotope ratios. Groundwater and runoff water samples were collected on a monthly basis from February 2003 to November 2003 and analyzed for nitrogen isotopes. The nitrate concentrations of groundwater in livestock fanning area were higher than those in conventional and organic fanning area and exceeded the national drinking water standard of 10mg N/ l. The ${\delta}^{15}N$ranges of chemical fertilizer and animal manure were - 3.7${\sim}$+2.3$\textperthousand$ and +12.5${\sim}$26.7$\textperthousand$, respectively. The higher ${\delta}^{15}N$ of animal manure than those of chemical fertilizer reflected isotope fractionation and volatilization of '''N. The different agricultural systems and corresponding average nitrate concentrations and ${\delta}^{15}N$ values were: conventional farming, 5.47mg/e, 8.3$\textperthousand$; organic fanning, 5.88mg/e, 10.1$\textperthousand$; crop-livestock farming, 12.5mg/e, 17.7%0. These data indicated that whether conventional or organic agriculture effected groundwater and runoff water quality. In conclusions, relationship between nitrate concentrations and ${\delta}^{15}N$ value could be used to make a distinction between nitrate derived from chemical fertilizer and from animal manure. Additional investigation is required to monitor long-term impact on water quality in accordance with agricultural systems.

A Study on the Effect of Fluid Flow on the Microstructure of High Purity Al Ingot under Forced Flow (강제대류시 고순도 Al괴의 응고조직에 미치는 유동의 영향)

  • Kim, Kyoung-Min;Kim, Heon-Joo;Ha, Ki-Yun;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.13 no.6
    • /
    • pp.540-546
    • /
    • 1993
  • The effects of fluid flow on the purification of aluminum were studied. As the revolution rate(N) increased, the size of columnar grain decreased gradually. The concentration of solidified crystal was decreased with increasing distance from chill and revolution rate(N). Distribution boundary layer thickness(${\delta}$) was calculated from the solute distribution obtained in solid experimentally and by use of BPS equation. The value of ${\delta}$ changed from about $60{\mu}m$ at N value of 27rpm to about $15{\mu}m$ at N value of 1000rpm. From this result, high purification was obtained by decreasing the diffusion boundary layer under forced convection.

  • PDF

Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type

  • Chung, Ill-Min;Lee, Taek-Jun;Oh, Yong-Taek;Ghimire, Bimal Kumar;Jang, In-Bae;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.195-200
    • /
    • 2017
  • Background: The natural ratios of carbon (C), nitrogen (N), and sulfur (S) stable isotopes can be varied in some specific living organisms owing to various isotopic fractionation processes in nature. Therefore, the analysis of C, N, and S stable isotope ratios in ginseng can provide a feasible method for determining ginseng authenticity depending on the cultivation land and type of fertilizer. Methods: C, N, and S stable isotope composition in 6-yr-old ginseng roots (Jagyeongjong variety) was measured by isotope ratio mass spectrometry. Results: The type of cultivation land and organic fertilizers affected the C, N, and S stable isotope ratio in ginseng (p < 0.05). The ${\delta}^{15}N_{AIR}$ and ${\delta}^{34}S_{VCDT}$ values in ginseng roots more significantly discriminated the cultivation land and type of organic fertilizers in ginseng cultivation than the ${\delta}^{13}C_{VPDB}$ value. The combination of ${\delta}^{13}C_{VPDB}$, ${\delta}^{15}N_{AIR}$, or ${\delta}^{34}S_{VCDT}$ in ginseng, except the combination ${\delta}^{13}C_{VPDB}-^{34}S_{VCDT}$, showed a better discrimination depending on soil type or fertilizer type. Conclusion: This case study provides preliminary results about the variation of C, N, and S isotope composition in ginseng according to the cultivation soil type and organic fertilizer type. Hence, our findings are potentially applicable to evaluate ginseng authenticity depending on cultivation conditions.

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes (안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구)

  • Park, Kwang-Su;Kim, Hyuk;Yu, Suk-Min;Noh, Seam;Park, Yu-Mi;Seok, Kwang-Seol;Kim, Min-Seob;Yoon, Suk Hee;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.

Temporal Variations in Isotope Ratios and Concentrations of Nitrate-nitrogen in Groundwater as Affected by Chemical Fertilizer and Livestock Manure

  • Yoo, Sun-Ho;Choi, Woo-Jung;Han, Gwang Hyun;Park, Jung-Geun;Lee, Sang-Mo;Jin, Sheng-ai
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.186-190
    • /
    • 1999
  • Isotope ratio ($^{15}N/^{14}N$) and nitrate-nitrogen concentration in groundwater were measured to investigate the effect of chemical fertilizer and livestock manure on temporal variations in nitrate-nitrogen concentration and to estimate the contribution of fertilizer and manure to groundwater contamination by nitrate. Four study wells from a rural area in Kyonggi province were selected. One well was located on an upper site from a livestock feedlot, and the others were situated at lower sites from the feedlot. The ${\delta}^{15}N$ values were analyzed by a stable isotope ratio mass spectrometer (Micromass, VG Optima IRMS). Reproducibility of the method and precision of the mass spectrometer were below 1.0 and 0.1‰, respectively Even though study wells were located at the same area, nitrate-nitrogen concentrations and ${\delta}^{15}N$ values differed and fluctuated during the sampling period. The ${\delta}^{15}N$ values of well located at upper site from the feedlot were extremely variable (-1.48~20.80‰). The ranges of ${\delta}^{15}N$ value of three wells situated at lower sites from the feedlot were 11.83~20.73 (ave. 16.11), 8.90~11.73 (ave.11.01), and 5.29~12.73‰ (ave. 8.21‰) with increasing distance from the feedlot. The average values of contribution proportion of nitrogen derived from livestock manure to nitrate-nitrogen in groundwater were 79% for the well closet to the feedlot, 44% for the well most distant from the feedlot, and 56% for the well in between the two wells.

  • PDF