• Title/Summary/Keyword: ${\beta}-sitosterol{\

Search Result 352, Processing Time 0.024 seconds

Metabolizing analysis according to the sawdust media of the known anticancer trees by Pleurotus ostreatuss (느타리버섯의 항암수목자원 배지속 함유성분의 분해능 평가)

  • Shin, Yu-Su;Yang, Bo-Hyun;Kang, Bo-Yeon;Kim, Hyun-Soo;Lee, Ji-Hyun;Hong, Yoon-Pyo;Lee, Sang-Won;Lee, Chan-Jung;Kim, Seung-Yoo
    • Journal of Mushroom
    • /
    • v.9 no.4
    • /
    • pp.186-189
    • /
    • 2011
  • The transitivity of Chemical constituents by Pleurotus ostreatus cultivated in different raw sawdusts, which are Juglans mandchurica, Cudrania tricuspidata and Lindera glauca, was investigated. The HPLC chromatography patterns on the chemical constituents of P. ostreatus showed the similar chromatography patterns in all different raw sawdusts and control sawdust. The unknown chemical constituents of P. ostreatus cultivated in the 10%, 20% mixed medium added 10 %, 20% different raw sawdusts, respectively, were increased. But the significance results in the mixed medium added 50% different raw sawdusts were not showed. The chromatography patterns of mycelia grown in media added the 80% MeOH extracts of three tree species showed the similar patterns in comparison with control mycelia. In the results, the secondary metabolites of functional media were not degrade and changed to other derivatives compounds by P. ostreatus.

Fermentation Properties of Yogurt Added by Lycii fructus, Lycii folium and Lycii cortex (구기자, 구기엽 및 지골피를 첨가한 요구르트의 발효 특성)

  • 조임식;배형철;남명수
    • Food Science of Animal Resources
    • /
    • v.23 no.3
    • /
    • pp.250-261
    • /
    • 2003
  • This experiment was carried out to examine the fermentation properties of yogurt with Lycii fructus, Lycii folium and Lycii cortex powder, and extract additives at concentrations of 0.5, 1.0, 2.0, 4.0, and 6.0%. Lactic acid bacteria was used in a mixed starter culture of Streptococcus salivarius ssp. thermophilus(ST36) and Lactobacillus delbrueckii ssp. bulgaricus(LB12). When the boxthorn was added with extract types, the changes of pH, acidity and lactic acid bacteria counts of yogurt during the fermenation of 3 hours were pH 5.64, titratable acidity 0.85%, 5.80xl0$\^$6/cfu/ml of viable cell counts for control yogurt, whereas those were pH 4.10∼5.06, titratable acidity 0.98∼1.27%, 1.80∼9.60x10$\^$7/ cfu/ml of viable cell counts for Lycii fructus extract yogurt. The lactose hydrolysis ratio was better for 1.0% Lycii fructus extract yogurt(42.00%) and 1.0% Lycii folium extract yogurt(41.46%) than for control yogurt(28.40%). Also, content of lactic acid of 1.0% Lycii fructus(11.9 times) and 1.0% Lycii folium extract yogurt(10.6 times) produced more than control yogurt(7.3 times). The viscosity of yogurt was better for boxthorn extract yogurt(1,027∼1,382 cps) than for control yogurt(975cps). The sensory scores of color, taste and overall acceptability of yogurt with 0.5, and 1.0% Lycii fructus extract additive were better than other groups. The yogurts made with increased Lycii fructus extract concentration(0.5∼6.0%), showed the increase of lactic acid, titratable acidity, number of lactic acid bacteria, viscosity and lactose hydrolysis rate compared to the treatments of 0.5, 1.0, 2.0, and 4.0% Lycii folium and Lycii cortex extract and powder yogurt. We gained excellent results from the yogurt to which Lycii fructus extract was added with 0.51.0% concentration.