• Title/Summary/Keyword: ${\beta}$ plane

Search Result 129, Processing Time 0.025 seconds

A Study on the Development of Forging Process for Steam Turbine Titanium Blade (증기터빈 티타늄 블레이드의 단조공정 개발에 관한 연구)

  • Kim Y. H.;Cho J. R.;Jeong H. S.;Park H. C.;Lee N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.354-357
    • /
    • 2005
  • When Ti-6Al-4V is used in long steam turbine blades, the main issues are how to improve the fatigue strength as a problem of internal quality and how to forge the thinnest possible blades as problem of dimensional precision. To assure an excellent fatigue strength, it is important to make the two phase fine and equiaxial structure by providing enough plastic deformation in the two phase$(\alpha\;phase/\beta\;phase)$ temperature region. Accordingly, it needs to predict that forging temperature, preform design and forging velocity in forging process. To achieve this end, the two steps forging process was suggested to forge the thin and twisted blades with a precision hammer considering die forces and metal flow. Two steps forging process consists of the flattening forging process and finishing forging process. Process in forging of a 1016mm long steam turbine blade is designed by the finite element method. This study attempts to derive systematic design procedures for process design in the forging. Forging parameters was analyzed in two-dimensional plane-strain simulation and two steps forging process carried out in three-dimensional simulation. Consequently, optimal forging process parameters of long steam turbine blades in Ti-6Al-4V with a high dimensional precision are selected in the hammer die forging.

  • PDF

Chemistry of Rethenium Hydridonitrosyl Complexes Containing Chelating Triphosphines II-Structures of $[RuH_2(NO)P_3]^+$ ($P_3$ : Chelating Triphosphines)

  • Ik Mo Lee;Devon W. Meek;Judith Gallucci
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.498-503
    • /
    • 1992
  • The protonation of RuH(NO)(Cyttp) resulted in the formation of $[RuH_2(NO)(Cyttp)]^+$ which is characterized as a classical cis-dihydried complex. This complex is fluxional and the intramolecular process involving a molecular hydrogen complex is proposed. This mechanism was further supported by the reactivity of this complex toward neutral 2-electron ligands. On the other hand, it failed to detect the existence of $[RuH_2(NO)(etp)]^+$ probably due to instability of the complex but the crystal structure of $[Ru(PMe_3)(NO)(etp)]^+$ formed by the protonation of RuH(NO)(etp) followed by the addition of $PMe_3$ was determined to have a trigonal bipyramidal structure with a linear NO in the equatorial plane and a facial etp ligand. The crystals are monoclinic, space group P21/n, with unit cell dimensions a = 14.130(2), b = 21.026 (3), c = 14.760 (1) ${\AA}$, ${\beta}$ = 97.88 $(l)^{\circ}$ V = 4344 ${\AA}^3$, Z = 4, R = 0.046 and $R_w$ = 0.056 for the 4779 intensities with $F_o^2 > 3{\sigma}(F_0^2)$ and the 440 variables.

The Crystal and Molecular Structure of $N_1$-Cyclohexyl-$N_1$-(o-Chlorobenzal) Imino Thiourea

  • Koo, Chung-Hoe;Kim, Hojing;Kim, Hoon-Sup;Chang, Chong-Whan
    • YAKHAK HOEJI
    • /
    • v.21 no.3
    • /
    • pp.146-158
    • /
    • 1977
  • N$_{1}$-cyclohexyl-$N_{2}$-(o-chlorobenzal) imino thiourea, $C_{14}$H$_{18}$N$_{3}$SCI, crystallizes in $C_{2}$/c, with a=19.68, b=7.74, c=20.42$\AA$, ${\beta}$=$92.$8^{\circ}$ and eight formula units in the unit cell. The structure was solved by the study of Patterson sections, calculated from three-dimensional film data, and was refined by block-diagonal least-squares methods to R=0.16 based on 1288 independent intensity data. The rest atoms of N$_{1}$-cyclohexyl-$_{2}$-(o-chlorobenzal) imino thiourea molecule excluding cyclohexan ring and chlorine atoms approximately lie on a plane. A pair of molecules related by the symmetry centers are connected directly with the N-H.......S hydrogen bonds. Apart from the hydrogen bonding system the structure is held together by the van der Waals forces.

  • PDF

Crystal Structure of Thiamin Tetrahydrofurfuryl Disulfide

  • Shin, Whan-Chul;Kim, Young-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.331-334
    • /
    • 1986
  • The crystal structure of thiamin tetrahydrofurfuryl disulfide, one of the ring-opened derivatives of thiamin, has been determined by the X-ray diffraction methods. The crystal is monoclinic with cell dimensions of a = 8.704 (1), b = 11.207 (2), c = 21.260 (3) ${\AA}$ and ${\beta}$ = 92.44 (2)$^{circ}$, space group P2$_{1}$/c and Z = 4. The structure was solved by direct methods and refined to R = 0.076 for 1252 observed reflections measured on a diffractometer. The molecule assumes a folded conformation in which the pyrimidine and the tetrahydrofurfuryl rings are on the same side of the ethylenic plane. The pyrimidinyl, N-formyl and ethylenic planes are mutually perpendicular to each other and the N(3)-C(4) bond retains a single bond character. The structure is stabilized by an intramolecular N(4'${\alpha})-H{\cdots}O(2{\alpha}$) hydrogen bond. The molecules are connected via N(4'${\alpha}$)-H{\cdots}(N3')$ and O(5${\gamma})-H{\cdots}(N1')$ hydrogen bonds, forming a two-dimensional hydrogen-bonding network. The tetrahydrofurfuryl ring is dynamically disordered. The overall conformation as well as the packing mode is very similar to that of thiamin propyl disulfide.

Position of impacted mandibular third molar in different skeletal facial types: First radiographic evaluation in a group of Iranian patients

  • Shokri, Abbas;Mahmoudzadeh, Majid;Baharvand, Maryam;Mortazavi, Hamed;Faradmal, Javad;Khajeh, Samira;Yousefi, Faezeh;Noruzi-Gangachin, Maruf
    • Imaging Science in Dentistry
    • /
    • v.44 no.1
    • /
    • pp.61-65
    • /
    • 2014
  • Purpose: This study was performed to evaluate the position of impacted mandibular third molars in different skeletal facial types among a group of Iranian patients. Materials and Methods: A total of 400 mandibular third molars in 200 subjects with different types of facial growth were radiographically investigated for their positions according to their types of facial growth on the basis of the ${\beta}$ angle. The subjects were divided into three groups (class I, II, and III) according to ANB angle, representing the anteroposterior relationship of the maxilla to the mandible. Meanwhile, the subjects were also divided into three groups (long, normal, and short face) according to the angle between the stella-nasion and mandibular plane (SNGoGn angle). ANOVA was used for statistical analysis. Results: The mean ${\beta}$ angle showed no significant difference among class I, II, and III malocclusions (df=2, F=0.669, p=0.513). The same results were also found in short, normal, and long faces (df=1.842, F=2, p=0.160). The mesioangular position was the most frequent one in almost all of the facial growth patterns. Distoangular and horizontal positions of impaction were not found in the subjects with class III and normal faces. In the long facial growth pattern, the frequency of vertical and distoangular positions were not different. Conclusion: In almost all of the skeletal facial types, the mesioangular impaction of the mandibular third molar was the most prevalent position, followed by the horizontal position. In addition, ${\beta}$ angle showed no significant difference in different types of facial growth.

Two Anhydrous Zeolite X Crystal Structures, $Pd_{18}Ti_{56}Si_{100}Al_{92}O_{384} and Pd_{21}Tl_{50}Si_{100}Al_{92}O_{384}$

  • Yun, Bo Yeong;Song, Mi Gyeong;Lee, Seok Hui;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • The crystal structures of fully dehydrated $Pd^{2+}$ - and $TI^{+}$ -exchanged zeolite X, $Pd_{18}TI_{56}Si_{100}Al_{92}O_{384}(Pd_{18}TI_{50-}X$, a = $24.935(4)\AA$ and $Pd_{21}TI_{50}Si_{100}Al_{92}O_{384}(Pd_{21}TI_{50-}X$ a = $24.914(4)\AA)$, have been determined by single-crystal X-ray diffraction methods in the cubic space group Fd3 at $21(1)^{\circ}C.$ The crystals were prepared using an exchange solution that had a $Pd(NH_3)_4Cl_2\;:TINO_3$ mole ratio of 50 : 1 and 200 : 1, respectively, with a total concentration of 0.05M for 4 days. After dehydration at $360^{\circ}C$ and 2 ${\times}$$10^{-6}$ Torr in flowing oxygen for 2 days, the crystals were evacuated at $21(1)^{\circ}C$ for 2 hours. They were refined to the final error indices $R_1$ = 0.045 and $R_2$ = 0.038 with 344 reflections for $Pd_{18}Tl_{56-}X$, and $R_1$ = 0.043 and $R_2$ = 0.045 with 280 reflections for $Pd_{21}Tl_{50-}X$; I > $3\sigma(I).$ In the structure of dehydrated $Pd_{18}Tl_{56-}X$, eighteen $Pd^{2+}$ ions and fourteen $TI^{+}$ ions are located at site I'. About twenty-seven $TI^{+}$ ions occupy site II recessed $1.74\AA$ into a supercage from the plane of three oxygens. The remaining fifteen $TI^{+}$ ions are distributed over two non-equivalent III' sites, with occupancies of 11 and 4, respectively. In the structure of $Pd_{21}Tl_{50-}X$, twenty $Pd^{2+}$ and ten $TI^{+}$ ions occupy site I', and one $Pd^{2+}$ ion is at site I. About twenty-three $TI^{+}$ ions occupy site II, and the remaining seventeen $TI^{+}$ ions are distributed over two different III' sites. $Pd^{2+}$ ions show a limit of exchange (ca. 39% and 46%), though their concentration of exchange was much higher than that of $TI^{+}$ ions. $Pd^{2+}$ ions tend to occupy site I', where they fit the double six-ring plane as nearly ideal trigonal planar. $TI^{+}$ ions fill the remaining I' sites, then occupy site II and two different III' sites. The two crystal structures show that approximately two and one-half I' sites per sodalite cage may be occupied by $Pd^{2+}$ ions. The remaining I' sites are occupied by $TI^{+}$ ions with Tl-O bond distance that is shorter than the sum of their ionic radii. The electrostatic repulsion between two large $TI^{+}$ ions and between $TI^{+}$ and $Pd^{2+}$ ions in the same $\beta-cage$ pushes each other to the charged six-ring planes. It causes the Tl-O bond to have some covalent character. However, $TI^{+}$ ions at site II form ionic bonds with three oxygens because the super-cage has the available space to obtain the reliable ionic bonds.

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Evaluation of Design Formulae for T-joints on the Branch Plate and Hollow Steel Sections welded connections (지관 플레이트가 주관에 용접된 각형강관 접합부의 설계내력 평가에 관한 연구)

  • Park, Keum Sung;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.581-591
    • /
    • 2005
  • This paper proposes a design formulae that evaluates the design strength of T-joints made of cold-formed square hollow steel sections with longitudinal branch plate. The T-joints had a configuration that a branch member used to longitudinal plate to the main chord in the plane. This study focused on the branch plate T-joints governed by the main chord flange failure mode among the experimental results. Based on the test results of the longitudinal branch plate T-joint in the square hollow sections, the ultimate strength on the T-joints was defined as 1.5 times the load at 1% B the strength of joints that governed the serviceability in control for $16.7{\leq}2\gamma(B/T){\leq}31.3$ and $0.20{\leq}{\beta}(b1/B){\leq}0.75$. Existing yield line models for normal T-joints were investigated to be the main chord flange failure for the branch plate T-joint, and this proposal design formula was based on the theory of the yield line model. Finally, the value of the finite element method compared with the value of the test and theory for the T-joints verified the validity of the design formulae.

The Crystal and Molecular Structure of Sodium Sulfisoxazole hexahydrate (Sodium Sulfisoxazole Hexahydrate의 결정 및 분자구조와 수소결합에 관한 연구)

  • Young Ja Park;Chung Hoe Koo
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1976
  • The crystal structure of sodium sulfisoxazole hexahydrate, $C_{11}H_{12}N_3O_3SNa{\cdot}6H_2O$,has been determined by X-ray diffraction method. The compound crystallizes in the monoclinic space group $$P2_1}c$$ with a = 15.68(3), b = 7.70(2), c = 17.94(4)${\AA}$, ${\beta}$ = $118(2)^{\circ}$ and Z = 4. A total of 1717 observed reflections were collected by the Weissenberg method with $CuK{\alpha}$ radiation. Structure was solved by heavy atom method and refined by block-diagonal least-squares methods to the R value of 0.14. The conformational angle formed by the S-C(l) bond with that of N(2)-C(7), when the projection in taken along the S-N(2), is $73^{\circ}.$ The benzene ring is planar and makes an angle of $60^{\circ}$ with the plane of the isoxazole ring, which is also planar. The sodium atom has a distorted octahedral coordination of N(l) and five oxygen atoms from hydrate molecules. Sodium sulfisoxazole hexahydrate shows fourteen different hydrogen bondings in the crystal. These are six $O-H{\cdots}O-H bonds, three $O-H{\cdots}O$ bonds, two $O-N{\cdots}N,$ one $N-H{\cdots}O,O-H{\cdots}N,N-H{\cdots}O-H$ bond, with the distances in the range of 2.71 to $3.04{\AA}.$.

  • PDF

The Crystal and Molecular Structure of Dipropargyldiphenylmethane (디프로파질디페닐메탄의 결정 및 분자구조)

  • Ahn Choong Tai;Choi Sam-Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.473-476
    • /
    • 1993
  • Dipropargyldiphenylmetane, $C_{19}H_{16}, crystallizes in a monoclinic space group $C2/_c$$ with a = 11304(3), b = 20.799(5), c = 6.622(2)${\AA}$, ${\beta} = 112.8(3)^{\circ}$, Z = 4, V = 1435.3${\AA}^3,\;F(000)\;=\;520,\;D_c\;=\;1.14g{\cdot}cm^{-3}$ and ${\mu}\;=\;0.32\;cm^{-1}$. The structure was solved by direct methods and all non-H atoms were identified in the E-map. The final refinement gave R = 0.055 from 1328 unique observed reflections with I $\geq$ -1.0 $\sigma(I).$ The molecule belongs to the point group $C_2$ of Symmetry by possessing the 2-fold axis which coincides witeh the crystallographic symmetry axis in the unit cell. The linear propargyl moiety is nearly $perpendicular(94.2)^{\circ}$ to the molecular plane of the benzene ring. The internal angle of methane carbon atoms in $108.1(1)^{\circ}$, bonding to the benzene and the propargyl moiety with the bond lengths of 1.530(2) and $1.560(2)\AA$, respectively. The shortest contant between the molecules is $3.538(2)\AA$ between C(9) and C(9) (-x, y, -1/2-z).

  • PDF