• Title/Summary/Keyword: ${\alpha}1$ - adrenoceptor

Search Result 85, Processing Time 0.025 seconds

Regulation of $Mg^{2+}$ Release in Guinea Pig Heart and Isolated Ventricular Myocytes by ${\alpha}_1-Adrenergic$ Stimulation (기니픽 심장과 심근 세포에서 ${\alpha}_1-Adrenergic$ 자극에 의한 $Mg^{2+}$ 유리조절)

  • Kang, Hyung-Sub;Chang, Sung-Eun;Kim, Jin-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.717-730
    • /
    • 1997
  • $Mg^{2+}$ is the fourth most abundant cation in cellular organisms. Although the biological chemistry and the physiological roles of the magnesium ion were well known, the regulation of intracellular $Mg^{2+}$ in mammalian cells is not fully understood. More recently, however, the mechanism of $Mg^{2+}$ mobilization by hormonal stimulation has been investigated in hearts and in myocytes. In this work we have investigated the regulation mechanism responsible for the $Mg^{2+}$ mobilization induced by ${\alpha}1-adrenoceptor$ stimulation in perfused guinea pig hearts or isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}$-free medium. ${\alpha}1-Agonists$ such as phenylephrine were found to induce $Mg^{2+}$ efflux in both perfused hearts or myocytes. This was blocked by prazosin, a ${\alpha}1-adrenoceptor$ antagonist. $Mg^{2+}$ efflux by phenylephrine was amplified by $Na^+$ channel blockers, an increase in extracellular $Ca^{2+}$ or a decrease in extracellular $Na^+$. By contrast, the $Mg^{2+}$ influx was induced by verapamil, nifedipine, ryanodine, lidocaine or tetrodotoxin in perfused hearts, but not in myocytes. $W_7$, a $Ca^{2+}/calmodulin$ antagonist, completely blocked the pheylephrine-, A23187-, veratridine-, $Ca^{2+}-induced$ $Mg^{2+}$ efflux in perfused hearts or isolated myocytes. In addition, $Mg^{2+}$ efflux was induced by $W_7$ in myocytes but not in perfused heart. In conclusion, An increase in $Mg^{2+}$ efflux by ${\alpha}1-adrenoceptor$ stimulation in hearts can be through $IP_3$ and $Ca^{2+}-calmodulin$ dependent mechanism.

  • PDF

Effect of Temperature Changes on the Renin Release in Vitro Experiments (RENIN 분필(分泌)에 미치는 온도의 영향(影響))

  • Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 1980
  • It has been well known that beta-adrenoceptor is responsible for the renin release stimulatory and alpha-adrenoceptor may be inhibitory. It has been observed accidently that alpha-adrenergic agonist can inhibit renin release by just changing the medium temperature in Vitro experiment in this laboratory. A series of experiments were performed to clarify this interesting phenomena in Vitro experiment. Rat renal slices were incubated in PSS medium under gas phase at $37^{\circ}C$. The following results were observed. 1) Isoproterenol and norepinephrine resulted in renin release stimulatory in dose-dependent by the concentrations of $10^{-9}$ to $10^{-5}\;M/L$ at $37^{\circ}C$. 2) Norepinephrine resulted in renin release inhibitory in dose dependent by the concentrations of $10^{-7}$ to $10^{-5}\;M/L$, and almost no effect by isoproterenol $10^{-6}\;M/L$ at $20^{\circ}C$. 3) Phenoxybenzamine pretreatment at $37^{\circ}C$ accentuated isoproterenol stimulatory effect at $37^{\circ}C$. 4) Phenoxybenzamine pretreatment at $20^{\circ}C$ attenuated isoproterenol stimulatory effect at $37^{\circ}C$. These data suggest that the renal adrenoceptor(s) related to renin release maybe a single entity, and can be interconverted different forms in certain conditions.

  • PDF

Effect of Piperine on Peripheral Sympathetic Nervous System in Isolated Vas deferens of Rat (Piperine이 적출 백서 정관내의 교감신경계에 미치는 영향)

  • Eun, Jae-Soon
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.55-61
    • /
    • 1988
  • To elucidate one of the effect of piperine on the peripheral sympathetic nervous system, influence of piperine upon the contractile action of norepinephrine, methoxamine and tyramine as well as uptake and release of $[^{3}H]-norepinephrine$ has been investigated in naive and chronic piperine-treated vas deferens of rats. $pA_2$ value for ${\alpha}_1-adrenoceptor$ of phentolamine was significantly increased. Chronic piperine-treated group was markedly shown increased efflux of $[^{3}H]-norepinephrine$ and muscular tension, but was not affected the neuronal up-take and release of $[^{3}H]-norepinephrine$. It can be concluded that potentiation of the effect of norepinephrine by acute and chronic piperine treated group may be due to the change of affinity of ${\alpha}_1-adrenoceptor$, and partly due to possible modification of storage mechanism.

  • PDF

Pharmacological Characterization of (10bS)-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline Oxalate (YSL-3S) as a New ${\alpha}_2$-Adrenoceptor Antagonist

  • Chung, Sung-Hyun;Yook, Ju-Won;Min, Byung-Jun;Lee, Jae-Yeol;Lee, Yong-Sup;Jin, Chang-Bae
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.353-359
    • /
    • 2000
  • ${\alpha}_2$-Adrenoceptor antagonists, which can enhance synaptic norepinephrine levels by blocking feedback inhibition processes, are potentially useful in the treatment of disease states such. as depression, memory impairment, impotence and sexual dysfunction. (10bS)-1,2,3,5,6,10b-Hexahydropyrrolo[2,1-a]isoquinoline oxalate (YSL-3S) was evaluated in several in vitro biological tests to establish its pharmacological profile of activities as an ${\alpha}_2$-adrenoceptor antagonist. Saturation binding assay revealed that$^{3}[H]$rauwolscine bound to the $\alpha$$_2$-adrenoceptors with a Kd value of 6.3$\pm$0.5 nM and a Bmax value of 25l$\pm$39 fmol/mg protein in rat cortical synaptic membranes. Competitive binding assay showed that YSL-3S inhibited the binding of$^3[H]$rauwolscine (1 nM) in a concentration-dependent manner with a Ki value of 98.2$\pm$12.1 nM while it did not inhibit the binding of [$^3$H]cytisine (1.25 nM) to neuronal nicotinic cholinergic receptors. The Ki values of yohimbine, clonidine and norepinephrine for $^3[H]$rauwolscine binding were 15.8$\pm$1.0, 40.1$\pm$5.9 and 40.0$\pm$11.5 nM, respectively. In addition, the binding affinity of YSL-3S for ${\alpha}_2$-adrenoceptors was higher than that of its antipode and the racemic mixture. The functional activity of YSL-3S at the presynaptic ${\alpha}_2$-adrenoceptors was assessed using the prostatic portion of the rat vas deferens. Clonidine inhibited field-stimulated contractions of the vas deference in a dose-dependent manner. The presence of YSL-3S or yohimbine caused a parallel, rightward the dose-response curve of clonidine in a dose-dependent manner, indicating an antagonistic action at the presynaptic ${\alpha}_2$-adrenoceptors. The $pA_2$values of yohimbine and YSL-3S were 7.66$\pm$0.13 and 6.64$\pm$0.18, respectively. The results indicate that YSL-3S acts as a competitive antagonist at presynaptic ${\alpha}_2$ -adrenoceptors with a potency approximately ten times lower than yohimbine, but is devoid of binding affinity for neuronal nicotinic cholinergic receptors.

  • PDF

Norepinephrine-Induced Rekindling of Mechanical Allodynia in Sympathectomized Neuropathic Rat (교감신경절제 받은 신경병증성 통증 쥐 모델에서 Norepinephrine에 의해 유도된 기계적 이질통의 Rekindling의 기전)

  • Moon, Dong-Eon
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.318-325
    • /
    • 1996
  • Background: Sympathectomy relieves pain in sympathectically maintained pain, and subcutaneous injection of norepinephrine(NE) can rekindle mechanical allodynia. However, the mechanism of rekindling is not clear. The purpose of this study is to investigate which subtype of $\alpha$-adrenoceptor is involved in NE-induced rekindling of mechanical allodynia in sympathectomized neuropathic rats. Methods: Neuropathic injury was produced by tightly ligating the left L5 and L6 spinal nerves of 36 male Sprague-Dawley rats and bilateral lumbar sympathectomy was done at two weeks postoperatively. Starting at 7 days after sympathectomy, rekindling of mechanical allodynia was induced by NE and clonidine injected into the left paw, which was reversed by pretreatment of phentolamine and idazoxan. Mechanical allocynia was quantified by measuring the frequency of foot lifts to two von Frey filaments applied to the paw. Results: All tested rats displayed well-developed signs of mechanical allodynia at the left paw that were abolished by a bilateral lumbar sympathectomy. Subcutaneous (s.c.) injection of NE (0.05 ${\mu}g$) into the affected paw of sympathectomized neuropathic rats rekindled previous mechanical allodynia. These effects could be mimicked by an ${\alpha}_2$-receptor agonist clonidine, but not by an ${\alpha}_1$-receptor agonist phenylephrine. The NE-induced rekindling of mechanical allodynia was significantly reduced by prior s.c. injection of a mixed $\alpha$-receptor antagonist phentolamine (20${\mu}g$) and ${\alpha}_2$-receptor antagonist idazoxan(20${\mu}g$), but not by a ${\alpha}_1$-receptor antagonist terazosin (20${\mu}g$). The pretreatment of idazoxan produced dose-related inhibition of NE-induced rekindling of mechanical allodynia. The rekindling induced by ${\alpha}_2$-receptor agonist clonidine (5${\mu}g$) was also reversed by prior s.c. injection of ${\alpha}_2$-receptor antagonist idazoxan (20${\mu}g$). Conclusion: Subcutaneous injection of NE into the paw of sympathectomized neuropathic rats rekindles mechanical allodynia, which is reversed by an ${\alpha}_2$-, but not by an ${\alpha}_1$-receptor antagonist. Therefore, rekindling of mechanical allodynia in sympathectomized neuropathic rats is mediated by ${\alpha}_2$-adrenoceptor.

  • PDF

Regulation of thyroxine release in the thyroid by protein kinase C (갑상선에서 protein kinase C에 의한 thyroxine 유리조절)

  • Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.6
    • /
    • pp.1073-1080
    • /
    • 1999
  • Previous studies suggested that the inhibition of thyroxine ($T_4$) release by ${\alpha}_1$-adrenoceptor and muscarinic receptor stimulation results in activated protein kinase C (PKC) from mouse and guinea pig thyroids. In the present study, the effect of carbachol, methoxamine, phorbol myristate acetate (PMA), and R59022 on the release of $T_4$ from the mouse, rat, and guinea pig thyroids was compared to clarify the role of PKC in the regulation of the release of $T_4$. The thyroids were incubated in the medium containing the test agents, samples of the medium were assayed for $T_4$ by EIA kits. Forskolin, an adenylate cyclase activator, chlorophenylthio-cAMP sodium, a membrane permeable analog of cAMP, and isobutyl-methylxanthine, a phosphodiesterase inhibitor, like TSH (thyroid stimulating hormone), enhaced the release of $T_4$ from the mouse, rat, and guinea pig thyroids. Methoxamine, an ${\alpha}_1$-adrenoceptor agonist, inhibited the TSH-stimulated release of $T_4$ in mouse, but not rat and guinea pig thyroids. In contrast, carbachol, a muscarinic receptor agonist, inhibited the release of $T_4$ in guinea pig, but not mouse and rat thyroids. These inhibition were reversed by prazosin, an ${\alpha}_1$-adrenoceptor antagonist or atropine, a muscarinic antagonist or $M_1$- and $M_3$-muscarinic antagonists, in mouse or guinea pig thyroids. In addition, staurosporine, a PKC inhibitor, reversed methoxamine or carbachol inhibition of TSH stimulation. Furthermore, PMA, a PKC activator, and R59022, a diacylglycerol (DAG) kinase inhibitor, inhibited the TSH-stimulated release of $T_4$ in mouse, rat, and guinea pig thyroids. These inhibition were blocked by staurosporine. These findings suggest that the activation of receptor or DAG inhibits TSH-stimulated $T_4$ release through a PKC-dependent mechanism in thyroid gland.

  • PDF

The regulation of Mg2+ efflux by melatonin in perfused guinea pig hearts (관류 기니픽 심장에서 melatonin에 의한 Mg2+ 유리 조절)

  • Chang, Hyo-jin;Youk, Ji-hea;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.319-325
    • /
    • 2001
  • Several recent studies demonstrate that cAMP accumulation evokes marked changes in magnesium ($Mg^{2+}$) homeostasis. The goal of this study was to investigate the effect of melatonin, the principal hormone of the vertebral pineal gland, on $Mg^{2+}$ regulation in perfused guinea pig hearts. We hypothesized that melationin would regulate $Mg^{2+}$ efflux induced by adrenergic drugs and cAMP analogues because melatonin inhibites adneylate cyclase (AC) and phospholipase C(PLC) in the hearts. The $Mg^{2+}$ content in the perfusate was significantly higher in the presence than in the absence of melatonin. The addition of forskolin, isoproterenol or dimaprit to perfused hearts induced a marked $Mg^{2+}$ efflux. These effluxes were not inhibited by melatonin. The $Mg^{2+}$ efflux could also be induced by phenylephrine, a ${\alpha}_1$-adrenoceptor agonist. This phenylephrine-induced $Mg^{2+}$ efflux was inhibited by melatonin. In addition, the phenylephrine-induced $Mg^{2+}$ efflux was potentiated by PMA, a protein kinase C(PKC) activator. This $Mg^{2+}$ efflux was inhibited by melatonin. In conclusion, these data suggest that melatonin regulates $Mg^{2+}$ homeostasis and the inhibitory effect of melatonin on ${\alpha}_1$-adrenoceptor-stimulated $Mg^{2+}$ efflux may occur through an inhibition of PLC pathway in perfused guinea pig hearts.

  • PDF

Influence of berberine on the blood pressure of rabbits

  • Ko, Suk-Tai;Lim, Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 1980
  • Berberine, when administered into a ear-vein of the rabbit anesthetized with urethane, produced a long-lasting, dose related fall in blood pressure, but intraventricular berberline did not elicit the hypotensive response. This hypotensive activity of berberine was not influenced by pretreatment of vagotomization and atropine. Depressor responses induced by berberine were not impaired by diphenhydramine, chlorisondamine, guanethidine and propranolol, but reduced significantly by phentolamine pretreatment. Berberine attenuated markedly prossor responses of norepinephrine and epinephrine. These results suggest that berberine causes the hypotensive activity that is attributable to alpha adrenoceptor blockade, but not to a direct relaxant effect upon vascular smooth muscle.

  • PDF

Effect of imidazole receptor active agents on porcine myometrial contractility (돼지의 자궁근 수축성에 대한 몇가지 imidazole receptor active agents의 효과)

  • Shin, Dong-ho;Nah, Seung-youl;Kim, Jae-ha
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.331-338
    • /
    • 1997
  • 최근 동물의 진통 및 진정을 목적으로 널리 사용되고 있는 imidazole 유도체인 clonidine, medetomidine, etomidate 등의 약물과 xylazine의 효과를 발정정지기의 척출 돼지 자궁근에서 검토하였다. Clonidine($10^{-8}{\sim}10^{-6}M$)이나 medetomidine($10^{-8}{\sim}10^{-6}M$)은 xylazine과 비슷한 정도로 용량의존적인 자궁근의 수축을 일으켰다. Clonidine, medetomidine, xylazine 등의 $EC_{50}$는 각각 24.7nM, 19.9nM, 45.1nM이었다. 그러나 etomidate는 $10^{-6}M$ 미만의 농도에서 반응이 거의 없었으며, $10^{-6}M$ 이상에서 수축반응을 일으켰다. 이들 agonists의 효과는 yohimbine($10^{-8}{\sim}10^{-6}M$), idazoxan($10^{-7}{\sim}10^{-5}M$), tolazoline($10^{-7}{\sim}10^{-5}M$) 등의 ${\alpha}_2-adrenoceptor$ antagonists에 의해서 차단되었으나, ${\alpha}_1-adrenoceptor$ antagonist인 prazosin ($10^{-6}M$)에 의해서는 차단되지 않았다. 또한 $Ca^{2+}-free$ medium이나 verapamil($10^{-5}M$)의 전처치에 의해서 이들 agonist의 효과가 완전히 차단되었다. 결론적으로 발정정지기의 돼지 자궁근에서 clonidine, medetomidine, etomidate, xylazine 등은 ${\alpha}_2-adrenoceptors$의 흥분을 통해 자궁근의 수축을 일으키며, 이 효과는 voltage-dependent $Ca^{2+}$ channels을 통한 extracellular $Ca^{2+}$ influx의 증가에 의한 것으로 추론하였다.

  • PDF

Pharmacological Characterization of Synthetic Tetrahydroisoquinoline Alkaloids, YS 51 and YS 55, on the Cardiovascular System

  • Chang, Ki-Churl;Kang, Young-Jin;Lee, Young-Soo;Chong, Won-Seog;Choi-Yun, Hey-Sook;Lee, Duck-Hyong;Ryu, Jae-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.461-469
    • /
    • 1998
  • Tetrahydroisoquinoline (THI) alkaloids can be considered as cyclized derivatives of simple phenylethy-lamines, and many of them, especially with 6,7-disubstitution, demonstrate relatively high affinity for catecholamines. Two -OH groups at 6 and 7 positions are supposed to be essential to exert ?${\beta}-receptor$ activities. However, it is not clear whether -OH at 6,7 substitution of THIs also shows ?${\alpha}-adrenoceptor$ activities. In the present study, we investigated whether -OH or $-OCH_3$ substitutions of 6,7 position of THIs differently affect the ?1-adrenoceptor affinity. We synthesized two 1-naphthylmethyl THI alkaloids, $1-{\beta}-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline$ HBr (YS 51) and $1-{\beta}-naphthylmethyl-6, 7-dimethoxy-1,2,3,4-tetrahydroisoquinoline$ HCl (YS 55), and their pharmacological actions on ?${\alpha}_1-adrenoceptor$ were compared. YS 51 and YS 55, concentration-dependently relaxed endothelium-denuded rat thoracic aorta precontracted with phenylephrine (PE, 0.1 ${\mu}M$) in which $pEC_{50}$ were $5.89{\pm}0.21$ and $5.93{\pm}0.19$, respectively. Propranolol (30 nM) did not affect the relaxation-response curves to YS 51 and YS 55. Concentration-response curves to PE were shifted to right by the pretreatment with YS 51 or YS 55. The $pA_2$ values of YS 51 and YS 55 showed $6.05{\pm}0.24$ and $5.88{\pm}0.16$, respectively. Both probes relaxed KCl (65.4 mM)-contracted aorta and inhibited $CaCl_2-induced$ contraction of PE-stimulated endothelium- denuded rat thoracic aorta in $Ca^{2+}-free$ solutions. In isolated guinea pig papillary muscle, 1 and 10 ${\mu}M$ YS 51 increased contractile force about 4- and 8- fold over the control, respectively, along with the concentration-dependent increment of cytosolic $Ca^{2+}$ ions. While, 10 ${\mu}M$ YS 55 reduced the contractile force about 50 % over the control and lowered the cytosolic $Ca^{2+}$ level, in rat brain homogenates, YS 51 and YS 55 displaced $[^3H]prazosin$ binding competitively with Ki 0.15 and 0.12 ${\mu}M$, respectively. However, both probes were ineffective on $[^3H]nitrendipine$ binding. Therefore, it is concluded that two synthetic naphthylmethyl-THI alkaloids have considerable affinity to ?1-adrenenoceptors in rat aorta and brain.

  • PDF