• Title/Summary/Keyword: ${\alpha}-Fe_2O_3$ nanoparticles

Search Result 15, Processing Time 0.022 seconds

The effect of laser energy on the preparation of iron oxide by a pulsed laser ablation in ethanol

  • Maneeratanasarn, P.;Khai, T.V.;Choi, B.G.;Shim, K.B.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.134-138
    • /
    • 2012
  • Recently the preparation magnetic nanoparticles by a pulsed laser ablation in liquid has gained much attention because it is easy to control experimental parameters. Iron oxide magnetic nanoparticles have been prepared by a pulsed laser ablation of ${\alpha}-Fe_2O_3$ target in ethanol at different magnitude of laser energy of 1, 20, 40 and 80 mJ/pulse. It revealed that particle size increases with increasing laser energy. It could be concluded that 40 mJ/pulse is an optimum laser energy for the preparation of iron oxide nanoparticles with uniform size distribution. The nanoparticles are homogeneously dispersed in ethanol and their stability maintained for several months.

The Synthesis of Maghemite and Hematite Nanospheres

  • Dar, Mushtaq Ahmad;Ansari, Shafeeque G.;Wahab, Rizwan;Kim, Young-Soon;Shin, Hyung-Shik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.472-473
    • /
    • 2006
  • Maghemite and hematite nanospheres were synthesized by using the Sol-gel technique. The structural properties of these nanosphere powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and pore size distribution. Hematite phase shows crystalline structures. The mean particle size that resulted from BET and XRD analyses were 4.9 nm and 2 nm. It can be seen from transmission electron microscopy that the size of the particles are very small which is in good agreement with the FESEM and the X-ray diffraction. The BET and pore size method were employed for specific surface area determination.

  • PDF

Enrichment of Peptides using Novel C8-functionalized Magnetic Nanoparticles for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis

  • Song, Sun-Mi;Yang, Hyo-Jik;Kim, Jin-Hee;Shin, Seong-Jae;Park, Eun-Hye;Kim, Jeong-Kwon
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.53-56
    • /
    • 2011
  • [ $C_8$ ]functionalized magnetic nanoparticles were synthesized by coating magnetic $Fe_3O_4$ nanoparticles with silicaamine groups using 3-aminopropyltriethoxysilane and by subsequently modifying the amine groups with chloro(dimethyl)octylsilane to produce octyl groups on the surface of the MNPs. The $C_8$-functionalized MNPs were used to enrich peptides from tryptic protein digests of myoglobin and ${\alpha}$-casein. The enriched peptides were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS was also used to investigate desalting of the $C_8$-functionalized MNPs. Sample solutions were prepared in 1.0 M NaCl, and the successful removal of salt was observed. Enrichment with $C_8$-functionalized MNPs was very effective for separating and concentrating tryptic peptides.

Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides

  • Seong, Ki-Hun;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.482-483
    • /
    • 2006
  • Synthesis of iron nanopowder by room-temperature electrochemical reduction process of ${\alpha}-Fe_2O_3$ nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of $1{\sim}20$ h and $30{\sim}40$ V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.

  • PDF

SIMS Protein imaging with nanoparticle tagged antibody for simultaneous omic imaging

  • Lee, Seon-Yeong;Mun, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.230.1-230.1
    • /
    • 2015
  • One of the major problems of biological ToF-SIMS imaging is the lack of protein and peptide imaging. Most of biological story telling is mianly based on proteins. The biological implication of lipid ToF-SIMS imaging would be much higher if protein imaging is provided together. Utilizing high secondary ion yields of metals, proteins can be ToF-SIMS imaged with nanoparticle tagged proteins. Nanoparticles such as Fe3O4, SiO2, PbS were used for imaing NeuN, MCH, Orexin A, ${\alpha}$ synucline, TH(Tryosine Hydroxylase) in mouse tissues with a spatial resolution of ${\sim}2{\mu}m$ using a TOF-SIMS. Lipids and neurotransmitters images obtained simultaneously with protein images were overlayed for more deeper understanding of neurobiology, which is not allowed by any other bioimaging technqiues. The protein images from TOF-SIMS were compared with confocal fluorescence microscopy and NanoSIMS images. A new sample preparation method for imaging single cell membranes in a tissue using the vibrotome technique to prepare a tissue slice without any fixation and freeze drying will be also presented briefly for Hippocampus and Hypothalamus tissues.

  • PDF