• Title/Summary/Keyword: ${\alpha}-Co$ and ${\varepsilon}-Co$ phase

Search Result 10, Processing Time 0.028 seconds

Magnetization and Intrinsic Coercivity for τ-phase Mn54Al46/α-phase Fe65Co35 Composite

  • Park, Jihoon;Hong, Yang-Ki;Lee, Jaejin;Lee, Woncheol;Choi, Chul-Jin;Xu, Xia;Lane, Alan M.
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.55-58
    • /
    • 2014
  • We have synthesized ferromagnetic ${\tau}$-phase $Mn_{54}Al_{46}/{\alpha}$-phase $Fe_{65}Co_{35}$ composite by annealing a mixture of paramagnetic ${\varepsilon}$-phase $Mn_{54}Al_{46}$ and ferromagnetic ${\alpha}$-phase $Fe_{65}Co_{35}$ particles at $650^{\circ}C$. The volume fraction ($f_h$) of hard ${\tau}$-phase $Mn_{54}Al_{46}$ of the composite was varied from 0 to 1. During the annealing, magnetic phase transformation occurred from paramagnetic ${\varepsilon}$-phase to ferromagnetic ${\tau}$-phase $Mn_{54}Al_{46}$. The magnetization and coercivity of the composite monotonically decreased and increased, respectively, as the $f_h$ increased. These results are in good agreement with our proposed composition dependent coercivity and modified magnetization equations.

Crystallization of Poly(1,4-diaminobutane-co-adipic acid-co-ε-caprolactam-co-diethylenetriamine) Copolymer Fiber (Poly(1,4-diaminobutane-co-adipic acid-co-ε-caprolactam-co-diethylenetriamine) 공중합체 섬유의 결정거동)

  • Jo, Kuk Hyun;Song, Jihyeon;Cho, Hyun-Hok;Jang, Soon-Ho;Lee, Hyun Hwi;Kim, Nam Cheol;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.231-238
    • /
    • 2016
  • We investigated the evolution of crystal formation as a function of drawing ratio in poly(1,4-diaminobutane-co-adipic acid-co-${\varepsilon}$-caprolactam-co-diethylenetriamine)(nylon 466T) copolymer formed by four monomers, i.e 1,4-diaminobutane, adipic acid, ${\varepsilon}$-caprolactam, diethylenetriamine(DETA), using synchrotron X-ray scattering measurement. In case of pristine(as spun) nylon 466T fiber, it was consisted with unoriented nylon $6{\alpha}$ and unoriented nylon $46{\alpha}$ phases. As increase the drawing ratio, unoriented nylon $6{\alpha}$ was transformed to oriented ${\gamma}$ phase, while unoriented nylon $46{\alpha}$ changed to oriented $46{\alpha}$ phase. The effect of the addition of DETA was not observed in the pristine fibers. However, DETA affected to restrict the formation of crystals at the maximum drawing condition, and as a result it had a role to increase the moisture regain.

Phase Transformation and Thermoelectric Properties of N-tyre β Processed by Mechanical Alloying (기계적 합금화로 제조한 N형 β의 상변화 및 열전 특성)

  • Eo, Sun-Cheol
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.375-381
    • /
    • 2002
  • N-type ${\beta}-FeSi_2$ with a nominal composition of $Fe_{0.98}Co_{0.02}Si_2$ powders has been produced by mechanical alloying process and consolidated by vacuum hot pressing. As-milled powders were of metastable state and fully transformed to ${\beta}-FeSi_2$ phase by subsequent isothermal annealing. However, as-consolidated $Fe_{0.98}Co_{0.02}Si_2$ consisted of untransformed mixture of ${\alpha}-Fe_2Si_ 5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting ${\beta}-FeSi_2$ phase. The transformation behavior of ${\beta}-FeSi_2$ was investigated by utilizing DTA, a modified TGA under magnetic field, SEM, and XRD analyses. Isothermal annealing at $830^{\circ}C$ in vacuum led to the thermoelectric semiconducting ${\beta}-FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties were remarkably improved by isothermal annealing due to the transformation from metallic $\alpha$ and $\varepsilon$ phases to semiconducting phases.

Magnetoresistance characteristics of EeN/Co/Cu/Co system spin-valve type multilayer (FeN/Co/Cu/Co계 spin-valve형 다층악의 자기저항 특성)

  • 이한춘;송민석;윤성호;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.210-219
    • /
    • 2000
  • The magnetoresistance characteristics of FeN/Co/Cu/Co and FeN/Co/Cu/Co/Cu/Co/FeN multilayers using ferromagnetic iron-nitrides (FeN) has been studied. The microstructure of FeN film is the mixed ${\alpha}$-Fe and $\varepsilon$-Fe$_3$N phase on the condition that the flow rate of N$_2$ gas is over 0.4 sccm. The magnetoresistance effect is observed because of shape magnetic anisotropy induced by needle-shaped $\varepsilon$-Fe$_3$N phase. This magnetoresistance effect changes, because the degree that the shape magnetic anisotropy adheres to the adjacent Co pinned layer is varied according to the flow rate of N$_2$ gas and the thickness of FeN film. The best magnetoresistance effect is obtained on the condition that the thickness of Co free layer is 70 ${\AA}$ and the maximum MR ratio(%) value of 3.2% shows in the FeN(250 ${\AA}$)/Co(70 ${\AA}$)/Cu(25 ${\AA}$)/Co(70 ${\AA}$)/Cu(25 ${\AA}$)/Co(70 ${\AA}$)/FeN(250 ${\AA}$) mutilayer film which is fabricated at the N, gas flow rate of 0.5 sccm and the FeN film thickness of 250 ${\AA}$. Four steps are observed in the magnetoresistance curve owing to this difference of coercive force, because respective magnetic layers in the multilayer possess different coercive forces. These effects observed in these mutilayer films can be expected to application to the memory device the same MRAM as can carry out simultaneously four signals.

  • PDF

Effect of Grain Size on the Damping Capacity of Fe-26Mn-4Co-2Al Damping Alloy (Fe-26Mn-4Co-2Al 제진합금의 감쇠능에 미치는 결정립 크기의 영향)

  • Jeong, Kyu-Seong;Kim, Doe-Hoon;Kwon, Soon-Doo;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.129-134
    • /
    • 2018
  • This study was carried out to investigate the effect of grain size on the damping capacity of the Fe-26Mn-4Co-2Al damping alloy. ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ were formed by cold working, and these martensites were formed with a specific direction and surface relief. With an increase in grain size, the volume fraction of ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ increased by decrement the austenite phase stability. This volume fraction more rapidly increased in cold-rolled specimen than in the specimen that was not cold-rolled. The damping capacity also increased more with the augmentation an increased grain size and more rapidly increased in cold-rolled specimen than in the specimen that was not cold rolled. The effect of grain size on the damping capacity was larger in the cold-rolled specimen than the specimen that was not cold-rolled. Damping capacity linearly increased with an increase in volume fraction of ${\varepsilon}-martensite$. Thus, the damping capacity was affected by the ${\varepsilon}-martensite$.

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능])

  • Son, D.U.;Jeong, S.H.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF

Corrosion Behaviors of TiN Coated Dental Casting Alloys (TiN피막 코팅된 치과주조용 합금의 부식거동)

  • Jo, Ho-Hyeong;Park, Geun-Hyeng;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.129-137
    • /
    • 2009
  • Corrosion behaviors of TiN coated dental casting alloys have been researched by using various electrochemical methods. Three casting alloys (Alloy 1: 63Co-27Cr-5.5Mo, Alloy 2: 63Ni-16Cr-5Mo, Alloy 3: 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting(CF), high frequency induction casting(HFI) and vacuum pressure casting(VP). The specimens were coated with TiN film by RF-magnetron sputtering method. The corrosion behaviors were investigated using potentiostat (EG&G Co, 263A. USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion morphologies were analyzed using FE-SEM and EDX. Alloy 1 and Alloy 2 showed the ${\alpha}-Co$ and ${\varepsilon}-Co$ phase on the matrix, and it was disappeared in case of TiN coated Alloy 1 and 2. In the Alloy 3, $Ni_2Cr$ second phases were appeared at matrix. Corrosion potentials of TiN coated alloy were higher than that of non-coated alloy, but current density at passive region of TiN coated alloy was lower than that of non-coated alloy. Pitting corrosion resistances were increased in the order of centrifugal casting, high frequency induction casting and vacuum pressure casting method from cyclic potentiodynamic polarization test.

Effect of Changes in Condition of Ammonia Gas Addition on the Surface Layer Microstructure and Porosity during Austenitic Nitriding of Low Carbon Steels (저 탄소강의 오스테나이트 질화 시 암모니아 가스첨가 조건변화가 표면층 조직 및 기공변화에 미치는 영향)

  • Lee, Jewon;Roh, Y.S.;Sung, J.H.;Lim, S.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.201-211
    • /
    • 2019
  • Low carbon steel (S20C steel) and SPCC steel sheet have been austenitic nitrided at $700^{\circ}C$ in a closed pit type furnace by changing the flow rate of ammonia gas and heat treating time. When the flow rate of ammonia gas was low, the concentration of residual ammonia appeared low and the hardness value of transformed surface layer was high. The depth of the surface layer, however, was shallow. With increasing the concentration of residual ammonia by raising up the ammonia gas flow, both the depth of the surface layer and the pore depth increased, while the maximum hardness of the surface layer decreased. By introducing a large amount of ammonia gas in a short time, a deep surface layer with minimal pores on the outermost surface was obtained. In this experiment, while maintaining 10~12% of residual ammonia, the flow rate of inlet ammonia gas, 7 liter/min, was introduced at $700^{\circ}C$ for 1 hour. In this condition, the thickness of the surface layer without pores appeared about $60{\mu}m$ in S20C steel and $30{\mu}m$ in SPCC steel plate. Injecting additional methane gas (carburizing gas) to this condition played a deteriorating effect due to promoting the formation of vertical pores in the surface layer. For $1^{st}$ transformed surface layer for S20C steel, maintaining 10~12% residual ammonia condition via austenitic nitriding process resulted in ${\varepsilon}$ phase with relatively high nitrogen concentration (just below 4.23 wt.%N) among the mixed phases of ${\varepsilon}+{\gamma}$. The ${\varepsilon}$ phase was formed a specific orientation perpendicular to the surface. For $2^{nd}$ transformed layer for S20C steel, ${\gamma}$ phase was rather dominant (just above 2.63 wt.%N). For SPCC steel sheet, there appeared three phases, ${\gamma}$, ${\alpha}(M)$ and weak ${\varepsilon}$ phase. The nitrogen concentration would be approximately 2.6 wt.% in these phases condition.

Corrosion Behavior of Dental Alloys Cast by Various Casting Methods (치과용 주조합금의 주조방법에 따른 부식거동)

  • Choe Han-Cheol;Ko Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.296-300
    • /
    • 2004
  • The defects of partial denture frameworks are mainly shrinkage porosity, inclusions, micro-crack, particles from investment, and dendritic structure. In order to investigate a good casting condition of partial denture frameworks, the three casting alloys and casting methods were used and detected casting defects were analyzed by using electrochemical methods. Three casting alloys (63Co-27Cr-5.5Mo, 63Ni-16Cr, 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting (Kerr, USA), high frequency induction casting (Jelenko Eagle, USA), vacuum pressure casting (Bego, Germany). The casting temperature was $1,380^{\circ}C$ (63Co-27Cr-5.5Mo and 63Ni-16Cr) and $1,420^{\circ}C$ (63Co-30Cr-5Mo). The casting morphologies were analyzed using FE-SEM and EDX. The corrosion test of the dendritic structure was performed through potentiodynamic method in 0.9% NaCl solutions at $36.5^{\circ}C$ and corrosion surface was observed using SEM. The defects of partial denture frameworks improved in the order of centrifugal casting, high frequency induction casting, and vacuum pressure casting method, especially, pore defects were found at part of clasp in the case of centrifugal casting method. The structure of casting showed dendritic structure for three casting alloys. In the 63Co-27Cr-5.5Mo and 63Co-30Cr-5Mo, $\alpha$-Co and $\varepsilon$-Co phases were identified at matrix and $${\gamma}$-Ni_2$Cr second phase were shown in 63Ni-16Cr. Also, the corrosion resistance of cast structure increased in the order of vacuum pressure casting, high frequency induction casting, and centrifugal casting method.

Phase Transformation During Hot Consolidation and Heat Treatments in Mechanically Alloyed Iron Silicide (기계적 합금화 Iron Silicide의 열간성형 및 열처리에 의한 상변화)

  • Eo, Sun-Cheol;Kim, Il-Ho;Hwang, Seung-Jun;Jo, Gyeong-Won;Choe, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1068-1073
    • /
    • 2001
  • An n-type iron$silicide(Fe_{0.98}Co_{0.02}Si_2)$has been produced by mechanical alloying process and consolidated by vacuum hot pressing. Although as-milled powders after 120 hours of milling did not show an alloying progress,${\beta}-FeSi_2$phase transformation was induced by isothermal annealing at$830{\circ}C$for 1 hour, and the fully transformed${\beta}-FeSi_2$phase was obtained after 4 hours of annealing. Near fully dense specimen was obtained after vacuum hot pressing at$ 1100{\circ}C$with a stress of 60MPa. However, as-consolidated iron silicides were consisted of untransformed mixture of ${\Alpha}-Fe_2Si_5$and ${\varepsilon-FeSi$phases. Thus, isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting${\beta}-FeSi_2$phase. The condition for${\beta}-FeSi_2$transformation was investigated by utilizing DTA, SEM, and XRD analysis. The phase transformation was shown to be taken place by a vacuum isothermal annealing at$830{\circ}C$and the transformation behaviour was investigated as a function of annealing time. The mechanical properties of${\beta}-FeSi_2$materials before and after isothermal annealing were characterized in this study.

  • PDF