• Title/Summary/Keyword: ${\alpha},{\beta}$-Unsaturated aldehydes

Search Result 27, Processing Time 0.018 seconds

Thirty Six Years of Research on the Selective Reduction and Hydroboration

  • Cha, Jin-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1808-1846
    • /
    • 2011
  • From 1975 to 2011, for thirty six years, the author and his collaborators have developed a variety of reducing and hydroborating agents, and applied them to organic synthesis, which involves the 1,2-reduction of ${\alpha}$,${\beta}$-unsaturated carbonyl compounds, stereoselective reduction of cycloalkanones, regioselective ring-opening of epoxides, partial reduction of carboxylic acid derivatives to aldehydes, regioselective addition to carbon-carbon multiple bonds, etc. by utilizing metal hydrides and the newly-devised the Meerwein-Ponndorf-Verley (MPV) type reagents. Such developments provide a new synthetic methodology making possible valuable selective reductions and hydroborations, not practical previously.

Inhibition of Side Reactions Forming Dimers of Diols in the Selective Hydrogenation of Methacryl Aldehyde (메타아크릴 알데히드의 선택적 수소화에서 2가 알코올의 이합체 형성 부반응 억제효과)

  • Kook-Seung Shin;Mi-Sun Cha;Kyoung-Ku Kang;Chang-Soo Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2023
  • The homogeneous catalyst, Ru-MACHO-BH, selectively performs hydrogenation reactions only on the carbonyl group of α, β-unsaturated aldehyde compounds with extremely high reactivity and selectivity. However, the hydrogenation of α, β-unsaturated aldehydes involves a heterogeneous Diels-Alder reaction, resulting in the formation of significant amounts of byproducts, such as dimers. In this study, we used the Ru-MACHO-BH catalyst (Carbonyl hydrido (tetrahydroborato) [bis (2-diphenyl phosphino ethyl) amino] ruthenium(II)) to selectively hydrogenate the carbonyl group of a specific type of α, β-unsaturated aldehyde called methacryl aldehyde, leading to the synthesis of methallyl alcohol. Simultaneously, we applied diols to inhibit the formation of byproducts. The results demonstrate that monoethylene glycol can significantly reduce the formation of diols. Based on these results, we effectively suppressed the formation of dimers containing vinyl groups in methacryl aldehyde by using hydroquinone, which can efficiently inhibit the chemical interaction of vinyl groups. Consequently, the conversion rate of methacryl aldehyde was increased. Ultimately, by reducing the amount of the expensive homogeneous catalyst Ru-MACHO-BH to 1/10, we achieved a selectivity of over 90% and a yield of over 80% for the desired product, methallyl alcohol. These results provide a method to minimize yield reduction while reducing the usage of expensive catalysts, thereby improving cost-effectiveness. We expect that the reaction could be applied to various kinds of selective hydrogenation and has been successfully run on an industrial scale.

Synthesis of Conjugated Dienals by Palladium-Catalyzed Vinyl Substitution Reaction (팔라듐 촉매화 비닐 치환 반응을 이용한 Conjugated Dienals의 합성)

  • Jong-Tae Lee;Jin Il Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.335-341
    • /
    • 1984
  • Acetals of ${\alpha},{\beta}$-unsaturated aldehydes reacted readily with aryl bromides in the presence of palladium catalyst and triethylamine to form aryl conjugated enals. Acrolein diethyl acetal and methacrolein diethyl acetal were reacted with phenyl bromides with substituents such as methyl and isopropyl groups at $100^{\circ}C$. The reaction products yields except the reaction of o-bromotoluene with methacrolein diethyl acetal. The products were identified by proton nuclear magnetic resonance and infrared spectroscopy. In the reverse combination of reactants to prepare aliphatic 2,4-dienals in good yield of above 50%, 3-bromopropenal dimethyl acetal and (E)-3-bromo-2-methylpropenal diethyl acetal were used as vinylic halide reactants and 1-alkenes and ethyl acrylate as olefin reactants.

  • PDF

Synthesis, Characterization and Application of Poly(4-Methyl Vinylpyridinium Hydroxide)/SBA-15 Composite as a Highly Active Heterogeneous Basic Catalyst for the Knoevenagel Reaction

  • Kalbasi, Roozbeh Javad;Kolahdoozan, Majid;Massah, Ahmadreza;Shahabian, Keinaz
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2618-2626
    • /
    • 2010
  • In this paper poly (4-methyl vinylpyridinium hydroxide)/SBA-15 composite was prepared as a highly efficient heterogeneous basic catalyst by in situ polymerization method for the first time. It was characterized by XRD, FT-IR, BET, TGA, SEM and back titration using NaOH. This catalyst exhibited the excellent catalytic activities for the Knoevenagel condensation of various aldehydes with ethyl cyanoacetate. Over this catalyst, ${\alpha},{\beta}$-unsaturated carbonyl compounds were obtained in the reasonable yield at $95^{\circ}C$ in 10 - 30 min in $H_2O$ as a solvent with a 100% selectivity to the condensation products. Catalyst could be easily recycled after the reaction and it could be reused without the significant loss of activity/selectivity performance. No by-product formation, high yields, short reaction times, mild reaction conditions and operational simplicity with reusability of the catalyst were the salient features of the present synthetic protocol. Presence of $H_2O$ as a solvent was also recognized as a "green method".

Pretreatment for Improving Selective Hydrogenation Reaction of α, β-Unsaturated Aldehydes (α, β-불포화 알데히드의 선택적 수소화 반응성 향상을 위한 전처리 방법)

  • Kook-Seung Shin;Mi-Sun Cha;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.168-174
    • /
    • 2023
  • In commercial production processes of methyl methacrylate, there is a methacryl aldehyde as an intermediate or impurities. The existence of impurities is critical factor because of significant decrease of the conversion rate and selectivity of the entire chemical reaction. This study found that an acid was the main cause of the decrease in reactivity among various impurities because an acid rapidly lowers the activity of a catalyst and promotes a side reaction, the hetero Diels-Alder reaction. Therefore, the pretreatment methods with the removal of acid were comparatively evaluated by the selective hydrogenation reaction of the carbonyl group of the reactants. Based on several experimental conditions, we believe that proposed effective pretreatment improves productivity with appropriate economical process.

Selective Reduction with Lithium Borohydride. Reaction of Lithium Borohydride with Selected Organic Compounds Containing Representative Functional Groups (수소화붕소리튬에 의한 선택환원. 수소화붕소리튬과 대표적 유기화합물과의 반응)

  • Nung Min Yoon;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.108-120
    • /
    • 1977
  • The approximate rates and stoichiometries of the reaction of lithium borohydride, with fifty two selected organic compounds containing representative functional groups under the standard condition (tetrahydrofuran, $0^{\circ}$), were studied.Among the active hydrogen compounds,primary alcohols and compounds containing an acidic proton liberated hydrogen relatively fast, but secondary and tertiary alcohols very sluggishly. All the carbonyl compounds examined were reduced rapidly within one hour. Especially, among the ${\alpha}{\beta}$-unsaturated carbonyl compounds tested, the aldehydes consumed one hydride cleanly, however the cyclic ketones consumed more than one hydride even at $-20^{\circ}$. Carboxylic acids were reduced very slowly, showing about 60% reduction in 6 days at $25^{\circ}$, however acyl chlorides reduced immediately within 30 minutes. On the other hand, the reductions of cyclic anhydrides proceeded moderately to the hydroxy acid stage, however the further reductions were very slow. Aromatic and aliphatic esters, with exception of the relatively moderate reduction of acetate, were reduced very slowly, however lactones were reduced at a moderate rate. Epoxides reacted slowly, but amides and nitriles as well as the nitro compounds were all inert to this reagent. And cyclohexanone oxime and phenyl isocyanate were reduced very sluggishly. Last of all, all sulfur compounds studied were inert to this hydride.

  • PDF

NADPH Oxidase and the Cardiovascular Toxicity Associated with Smoking

  • Kim, Mikyung;Han, Chang-Ho;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smoking-induced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and ${\alpha}$,${\beta}$-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and $-930^{A/G}$ polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat smoking-induced CVD.