• Title/Summary/Keyword: ${\alpha}$-tocopherol transfer protein

Search Result 2, Processing Time 0.016 seconds

Alpha-Tocopherol Transfer Protein (${\alpha}$-TTP): Insights from Alpha-Tocopherol Transfer Protein Knockout Mice

  • Lim, Yun-Sook;Traber, Maret G.
    • Nutrition Research and Practice
    • /
    • v.1 no.4
    • /
    • pp.247-253
    • /
    • 2007
  • Alpha-tocopherol transfer protein (${\alpha}$-TTP) is a liver cytosolic transport protein that faciliates ${\alpha}$-tocopherol (${\alpha}$-T) transfer into liver secreted plasma lipoproteins. Genetic defects in ${\alpha}$-TTP, like dietary vitamin E deficiency, are associated with infertility, muscular weakness and neurological disorders. Both human and ${\alpha}$-TTP deficient (${\alpha}-TTP^{-/-}$) mice exhibit severe plasma and tissue vitamin E deficiency that can be attenuated by sufficient dietary ${\alpha}$-T supplementations. In this review, we summarize the literature concerning studies utilizing the ${\alpha}-TTP^{-/-}$ mice. Levels of vitamin E in the ${\alpha}-TTP^{-/-}$ mice do not appear to be directly related to the amounts of dietary ${\alpha}$-T or to the levels of ${\alpha}$-TTP protein in tissues. The ${\alpha}-TTP^{-/-}$ mice appear to present a good model for investigating the specific role of ${\alpha}$-T in tissue vitamin E metabolism. Furthermore, ${\alpha}-TTP^{-/-}$ mice appear to be useful to elucidate functions of ${\alpha}$-TTP beyond its well recognized functions of transferring ${\alpha}$-T from liver to plasma lipoprotein fractions.

In Vitro Maturation of Bovine Follicular Oocytes (소 미성숙 난포란의 체외성숙)

  • 문승주;김은국;김광현;선상수;명규호;김재홍
    • Journal of Embryo Transfer
    • /
    • v.15 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • This study was conducted to investigate the effect of hormones, protein sources and anti-oxidants on in vitro maturation (IVM) and in vitro fertilization(IVF) of bovine follicular oocytes. The rates of Holstein follicular oocytes classified as grade A and B(50.2% and 33.2%) were higher than those of Hanwoo cattle(40.3% and 32.0%, P<0.05). The cumulus cell expansion rates of oocytes cultured in TCM-199 and Ham's F-10 medium supplemented with 10% FCS and hormones were higher (81.9~87.6%) than those of non-treated groups (74.5~81.7%). The fertilization rates of oocytes cultured in TCM-199 and Ham's F-10 medim supplemented with 10% FCS, 1% BSA and 10% bFF was 53.8~55.0%, 51.4~52.6%, and 47.0~50.0%, respectively. The polyspermy rates was 13.6~14.2%, 10.0~11.1%, and 10.0%, respectively. When the oocytes were cultured in TCM-199 and Ham's F-10 medium with 50${\mu}{\textrm}{m}$ $\alpha$-tocopherol, the fertilization rates was 62.0 and 60.2%, respectively. In the maturation medium added of 100${\mu}{\textrm}{m}$ cysteamine, the fertilization rates was 64.7 and 66.7%, respectively. The fertilization and polyspermy rates of treated groups were higher than those of non-treated group. The results show that hormones, protein sources and anti-oxidants can provide a benefit for in vitro maturation and fertilization of bovine follicular oocytes.

  • PDF