• Title/Summary/Keyword: ${\alpha}$-alumina

Search Result 184, Processing Time 0.029 seconds

Gas transport properties of alumina composite membranes

  • Lee, Hong-Joo;Hiroyuki Yamauchi;Hiroyuki Suda;Kenji Haraya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.128-131
    • /
    • 2004
  • The composite mesoporous ceramic membranes were prepared with ${\gamma}$-alumina and poly (2, 6-dimethyl-l, 4-pyphenylene oxide) (PPO) on the surface of the macroporous $\alpha$-alumina ceramic membranes and the permeation results were compared with those of the $\alpha$-alumina membrane for large-scale applications. In the results of the transport experiments, the ceramic membranes gave high gas permeances mainly due to Knudsen diffusion and surface diffusion as an additional mechanism. And, the polymer modification increased the permeances of the strongly adsorbing gas components. In this study the modifications of alumina ceramic membranes could increase the gas permeation performances especially for the strongly absorbing gas components.

  • PDF

Preparation of High Purity α-Alumina from Aluminum Black Dross by Redox Reaction (알루미늄 블랙 드로스로부터 산화 환원반응을 이용한 고순도 알파 알루미나의 제조)

  • Shin, Eui-Sup;An, Eung-Mo;Lee, Su-Jeong;Ohtsuki, Chikara;Kim, Yun-Jong;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.445-449
    • /
    • 2012
  • We investigate the effects of redox reaction on preparation of high purity ${\alpha}$-alumina from selectively ground aluminum dross. Preparation procedure of the ${\alpha}$-alumina from the aluminum dross has four steps: i) selective crushing and grinding, ii) leaching process, iii) redox reaction, and iv) precipitation reaction under controlled pH. Aluminum dross supplied from a smelter was ground to separate metallic aluminum. After the separation, the recovered particles were treated with hydrochloric acid(HCl) to leach aluminum as aluminum chloride solution. Then, the aluminum chloride solution was applied to a redox reaction with hydrogen peroxide($H_2O_2$). The pH value of the solution was controlled by addition of ammonia to obtain aluminum hydroxide and to remove other impurities. Then, the obtained aluminum hydroxide was dried at $60^{\circ}C$ and heat-treated at $1300^{\circ}C$ to form ${\alpha}$-alumina. Aluminum dross was found to contain a complex mixture of aluminum metal, aluminum oxide, aluminum nitride, and spinel compounds. Regardless of introduction of the redox reaction, both of the sintered products are composed mainly of ${\alpha}$-alumina. There were fewer impurities in the solution subject to the redox reaction than there were in the solution that was not subject to the redox reaction. The impurities were precipitated by pH control with ammonia solution, and then removed. We can obtain aluminum hydroxide with high purity through control of pH after the redox reaction. Thus, pH control brings a synthesis of ${\alpha}$-alumina with fewer impurities after the redox reaction. Consequently, high purity ${\alpha}$-alumina from aluminum dross can be fabricated through the process by redox reaction.

Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes (나피온-알루미나 복합막을 사용한 이온성 폴리머-금속 복합체 작동기의 제작 및 성능 평가)

  • Lee, Jang-Woo;Kim, Woo-Sung;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.377-383
    • /
    • 2009
  • Ionic polymer-metal composite (IPMC) actuator generates bending actuation via ion/water flux to the cathode side under an electric field. Polyelectrolytes in IPMC should possess high water-retention capability, proton conductivity, and Young's modulus. In this study. for endowing IPMCs with these properties, Nafion-alumina composite membranes containing $\alpha$- or $\gamma$-aluminas of $4{\sim}8$ wt% were prepared. Mechanical moduli of Nafion-alumina composite membranes were $7{\sim}3$ MPa higher than that of Nafion, with the slight decrease in proton conductivity. At DC 3 V. the actuation performance of the Nafion-$\alpha$-alumina (8 wt%)-IPMC was superior to that of the typical Nafion-IPMC. exhibiting 2.7 times the displacement with an enhanced blocking force. The enhanced actuation performance with the Nafion-$\alpha$-alumina composite membranes was attributed to the higher proton conductivity, the elevated ion/water flux, and the lower interfacial electric resistance of platinum electrodes and membrane, compared with those containing $\gamma$-alumina.

Preparation of Crack-free ZIF-7 Thin Films by Electrospray Deposition (정전분무법에 의한 결함없는 ZIF-7 박막의 제조)

  • Melgar, Victor Manuel Aceituno;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.278-282
    • /
    • 2013
  • Zeolitic imidazolate frameworks (ZIFs) have been the focus of interest for their physical and chemical properties, especially, for their extraordinary gas separation properties. In this study, a novel and efficient method for the fabrication of continuous ZIF-7 film on ${\alpha}$-alumina substrate has been investigated. The electrospray deposition method was tried for the first time to prepare ZIF films directly without the necessity of prior substrate seeding. It has the advantage of depositing thin ZIF-7 films directly on the ${\alpha}$-alumina substrate by electrospraying the precursor solution. The ZIF-7 films have been characterized through XRD, FE-SEM, and single gas permeation tests.

The Preparation of Seeded Alumina from Alkoxide (I): Powders (알콕사이드로부터 Seed가 첨가된 알루미나의 제조(I): 분말특성)

  • 김창은;임광일;이해욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.367-376
    • /
    • 1992
  • The powder characteristics of seeded alumina prepared from alkoxide by sol-gel method were studied. When ${\alpha}$-Al2O3 seeded powders used, these ${\alpha}$ phase transformation temperatures decreased than those of unseeded powders by 110$^{\circ}C$ and fine powders under 0.1 $\mu\textrm{m}$ could be obtained. When Fe-nitrate added powders used, fast transformation rate resulted from ionic effects of Fe3+, but hard aggregated morphology exhibited. When ${\alpha}$-Al2O3 and Fe nitrate simultaneously added, these powders represented lower transformation temperature but resulted in microstructure with aggregated particles.

  • PDF

Hydroxyapatite Formation on Crystallized Bioactive Glass Coat on Alumina (알루미나에 코팅된 생체활성유리의 결정화에 따른 수산화 아파타이트 형성)

  • 이은성;지상수;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • Alumina glazed with a bioactive glass reacted in Simulated Body Fluids(SBF) to investigate the behavior of hydroxyapatite formation on the glass coat layer. Various crystalline phases were found depending on the firing temperatures when the bioactive glass coat was heat-treated. The glass coat was crystallized into ${\beta}$-wollastonite and apatite when fired at 1100$^{\circ}C$, and ${\alpha}$-wollastonite and apatite when fired at 1200$^{\circ}C$. Those samples reacted in SBF, and it is observed that hydroxyapatite developed on the surface of the crystallized glaze. Its formation was much easier in the sample with ${\alpha}$-wollastonite than with ${\beta}$-wollastonite. This is because that the ${\alpha}$-wollastonite dissolves more easily than ${\beta}$-wollastonite does in SBF.

The Effect of Porous Support and Intermediate Layer on the Silica-zirconia Membranes for Gas Permeation Performance (실리카-지르코니아 분리막 성능에 대한 다공성 지지체와 중간층의 영향)

  • Lee, Hye Ryeon;Seo, Bongkuk
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • In this study, porous metal (O.D. = 10 mm, length = 10 mm, 316 L SUS, Mott Corp.) and ${\alpha}$-alumina tube (O.D. = 10 mm, length = 50 mm, Pall, German) support was modified with suspension sols, which were consisted of $3{\sim}4{\mu}m$ and 150 nm size of ${\alpha}$-alumina particle in the water or silica-zirconia colloidal sol. The porous support was fabricated by dip coating method for 5 seconds with suspension of alumina particles. After drying at $100^{\circ}C$ for 1 h, it was calcined at $550^{\circ}C$ for 30 min. It was repeated several times in order to decrease big pore on support. The surface roughness and largest pore size on the porous support was decreased by increasing coating times with $3{\sim}4{\mu}m$ size of ${\alpha}$-alumina particle and alumina coating with 150 nm size of ${\alpha}$-alumina particle served as further smoothening the surface and decreasing the pore size of the substrate. And the silica-zirconia membranes were successfully prepared on the modified porous metal and ${\alpha}$-alumina supports, and showed hydrogen permeance in the range of $1.8-8.4{\times}10^{-4}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and $3.3-5.0{\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$, respectively.

Synthesis of Silica/Alumina Composite Membrane Using Sol-Gel and CVD Method for Hydrogen Purification at High Temperature (Sol-gel 및 CVD법을 이용한 고온 수소 분리용 silica/alumina 복합막의 합성)

  • 서봉국;이동욱;이규호
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.124-132
    • /
    • 2001
  • Silica membranes were prepared on a porous ${\alpha}$-alumina tube with pore size of 150nm by sol-gel and chemical vapor deposition(CVD) method for hydrogen separation at high temperatures. Silica and ${\gamma}$-lumina membranes formed by the sol-gel method possessed a large amount of mesopores of a Knudsen diffusion regime. In order to improve the $H_2$ selectivity, silica was deposited in the sol-gel derived silica/${\gamma}$-alumina layer by thermal decomposition of tetraethyl orthosilicate(TEOS) at $600^{\circ}C$. The CVD with forced cross flow through the porous wall of the support was very effective in plugging mesopores that were left unplugged in the membranes. The CVD modified silica/alumina composite membrane completely rejected nitrogen permeation and thus showed a high $H_2$ selectivity by molecular sieve effect. the permeation of hydrogen was explained by activated diffusion and the activation energy was 9.52kJ/mol.

  • PDF

Preparation of Spherical Alumina Particle from Aluminum Iso-Propoxide (Aluminum Iso-Propoxide에 의한 구형 알루미나 분체의 제조)

  • Lee, Jin-Hwa;Nam, Ki-Dae;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.163-170
    • /
    • 1999
  • Spherical alumina powders were prepared by the controlled hydrolysis of aluminum iso-propoxide in a solution consisting of n-octyl alcohol and acetonitrile. As aluminum alkoxide's concentration increased, the particle size was increased and size distribution was more broad. As-prepared particle morphology was not spherical when acetonitrile volume fraction was increased over than 60%. As-prepared amorphous powders crystallized to ${\gamma}$-alumina at $1000^{\circ}C$ and converted to ${\alpha}$-alumina at $1150^{\circ}C$. The particle morphology was retain after crystallization ${\alpha}$-alumina. When aluminum iso-propoxide was used as aluminum source, the optimum preparation condition of spherical alumina was 0.1M AIP, 0.2M H2O, $0.1g/{\ell}$ HPC with a volume fraction (1/1) of the n-octyl alcohol/acetonitrile, 10min of reaction time and 30min of aging time.