• Title/Summary/Keyword: ${\alpha}$-LA

Search Result 215, Processing Time 0.03 seconds

Studies on the Membrane Topology of the (Na, K) ATPase

  • Lee, Kyunglim-Yoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.181-181
    • /
    • 1996
  • The (Na, K) ATPase is a membrane ion transporting ATPase composed of an ${\alpha}$ catalytic subunit and a ${\beta}$ glycoprotein subunit. The topology of the rat ${\alpha}$1 and ${\beta}$1 subunits has been studied by insertion of epitope(s) : at the NH2-terminus and COOH-terminus and between Glu117 and Glul18, Lys828 and Arg829, Gln900 and Trp901, and Va1939 and Phe940 of the ${\alpha}$ subunit; and at the NH2-terminus and COOH-terminus and between Glu228 and Tyr229 of the ${\beta}$ subunit. The epitope-tagged ${\alpha}$l, constructs were expressed in HeLa cells to select for stable cell lines expressing a functional (Na, K)ATPase. All constructs, except for the one tagged between Gln900 and Trp901, resulted in ouabain-resistant colonies indicating that modified proteins retained functional integrity. The epitope-tagged ${\beta}$ constructs were transiently expressed in Cos-7 cells. The orientation of the epitopes with respect to the cell membrane was revealed by indirect immunofluorescence performed on permeabilized and non-permeabilized cells expressing the (Na, K)ATPase chains. The results indicate that the ${\alpha}$ subunit has 4 transmembrane segments in the COOH terminal membrane bound domain between residues 760 and 938, and that both the NH2-terminus and the COOH-terminus are in the cytosol; it was not determined whether there are more transmembrane segments between residue 938 and the COOH-terminus. The ${\beta}$ subunit has only one transmembrane spanning region with the NH2-terminus in the cytosol and the COOH-terminus on the extracytoplasmic surface of the plasma membrane.

  • PDF

Biological Significance of Essential Fatty Acids/Prostanoids/Lipoxygenase-Derived Monohydroxy Fatty Acids in the Skin

  • Ziboh, Vincent-A.;Cho, Yunhi;Mani, Indu;Xi, Side
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.747-758
    • /
    • 2002
  • The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin $E_2(PGE_2)$ and $PGF_{2{\alpha}}$, the metabolism of AA via the 15-lipoxygenase (15-LOX) pathway, which is very active in skin epidermis and catalyzes the transformation of M into predominantly 15S-hydroxyeicosatetraenoic acid (15S-HETE). Additionally, the 15-LOX also metabolizes the 18-carbon LA into 13S-hydroxyoctadecadienoic acid (13S-HODE), respectively. Interestingly, 15-LOX catalyzes the transformation of $dihomo-{\gamma}-linolenic$ acid (DGLA), derived from dietary gamma-linolenic acid, to 15S-hydroxyeicosatrienoic acid (15S-HETrE). These monohydroxy fatty acids are incorporated into the membrane inositol phospholipids which undergo hydrolytic cleavage to yield substituted-diacylglycerols such as 13S-HODE-DAG from 13S-HODE and 15S-HETrE-DAG from 15S-HETrE. These substituted-monohydroxy fatty acids seemingly exert anti-inflammatory/antiproliferative effects via the modulation of selective protein kinase C as well as on the upstream/down-stream nuclear MAP-kinase/AP-1/apoptotic signaling events.

Cytotoxic and Mutagenic Effects of Cinnamomum cassia Bark-Derived Materials

  • LEE , HOI-SEON;KIM, SUN-YEOU;LEE, CHI-HOON;AHN, YOUNG-JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1176-1181
    • /
    • 2004
  • The cytotoxic activities of Cinnamomum cassia (Blume) bark-derived materials toward six human HeLa epithelioid cervix, A549 lung, SK-OV-3 ovarian, SK-MEL-2 melanoma, XF-498 central nerve system, and HCT-15 colon tumor cell lines were evaluated by using sulforhodamine B assay and compared to those of the anticancer agents, cisplatin and mitomycin C. The biologically active constituent of the Cinnamomum bark was characterized as trans­cinnamaldehyde by spectroscopic analysis. The cytotoxic activity of cinnamaldehyde against HeLa, SK-MEL-2, and HCT -15 cell lines was comparable to that of cisplatin and mitomycin C. The compound showed lower activity against A549, SK-OV-3, and XF-498 cell lines than the anticancer agents. Eugenol exhibited moderate activity against SK-OV­3, XF-498, and HCT-15 tumor cells, and trans-cinnamic acid, cinnamyl alcohol, $\alpha-pinene,\;and\;\beta-pinene$ showed little or no activity against model tumor cells. Cinnamaldehyde was not mutagenic against four strains (TA 98, TA 100, TA 1535, and TA 1537) of Salmonella typhimurium (Castel and Chalm). These results indicate at least one pharmacological action of C. cassia.

Sensitization of Cervical Carcinoma Cells to Paclitaxel by an IPP5 Active Mutant

  • Zeng, Qi-Yan;Huang, Yu;Zeng, Lin-Jie;Huang, Min;Huang, Yong-Qi;Zhu, Qi-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8337-8343
    • /
    • 2014
  • Paclitaxel is one of the best anticancer agents that has been isolated from plants, but its major disadvantage is its dose-limiting toxicity. In this study, we obtained evidence that the active mutant IPP5 ($8-60hIPP5^m$), the latest member of the inhibitory molecules for protein phosphatase 1, sensitizes human cervix carcinoma cells HeLa more efficiently to the therapeutic effects of paclitaxel. The combination of $8-60hIPP5^m$ with paclitaxel augmented anticancer effects as compared to paclitaxel alone as evidenced by reduced DNA synthesis and increased cytotoxicity in HeLa cells. Furthermore, our results revealed that $8-60hIPP5^m$ enhances paclitaxel-induced G2/M arrest and apoptosis, and augments paclitaxel-induced activation of caspases and release of cytochrome C. Evaluation of signaling pathways indicated that this synergism was in part related to downregulation of NF-${\kappa}B$ activation and serine/threonine kinase Akt pathways. We noted that $8-60hIPP5^m$ downregulated the paclitaxel-induced NF-${\kappa}B$ activation, $I{\kappa}B{\alpha}$ degradation, PI3-K activity and phosphorylation of the serine/threonine kinase Akt, a survival signal which in many instances is regulated by NF-${\kappa}B$. Together, our observations indicate that paclitaxel in combination with $8-60hIPP5^m$ may provide a therapeutic advantage for the treatment of human cervical carcinoma.

Dietary intake of n-3 and n-6 polyunsaturated fatty acids in Korean toddlers 12-24 months of age with comparison to the dietary recommendations

  • Kim, Youjin;Kim, Hyesook;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Adequate dietary fatty acid intake is important for toddlers between 12-24 months of age, as this is a period of dietary transition in conjunction with rapid growth and development; however, actual fatty acid intake during this period seldom has been explored. This study was conducted to assess the intake status of n-3 and n-6 polyunsaturated fatty acids by toddlers during the 12-24-month period using 2010-2015 Korea National Health and Nutrition Examination Survey data. SUBJECTS/METHODS: Twenty-four-hour dietary recall data of 12-24-month-old toddlers (n = 544) was used to estimate the intakes of ${\alpha}$-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), docosahexaenoic acid (DHA; 22:6n-3), linoleic acid (LA; 18:2n-6), and arachidonic acid (AA; 20:4n-6), as well as the major dietary sources of each. The results were compared with the expected intake for exclusively breastfed infants in the first 6 months of life and available dietary recommendations. RESULTS: Mean daily intakes of ALA, EPA, DHA, LA, and AA were 529.9, 22.4, 37.0, 3907.6, and 20.0 mg/day, respectively. Dietary intakes of these fatty acids fell below the expected intake for 0-5-month-old exclusively breastfed infants. In particular, DHA and AA intakes were 4 to 5 times lower. The dietary assessment indicated that the mean intake of essential fatty acids ALA and LA was below the European and the FAO/WHO dietary recommendations, particularly for DHA, which was approximately 30% and 14-16% lower, respectively. The key sources of the essential fatty acids, DHA, and AA were soy (28.2%), fish (97.3%), and animals (53.7%), respectively. CONCLUSIONS: Considering the prevailing view of DHA and AA requirements on early brain development, there remains considerable room for improvement in their intakes in the diets of Korean toddlers. Further studies are warranted to explore how increasing dietary intakes of DHA and AA could benefit brain development during infancy and early childhood.

Effect of Oxygen Supply on the Production of Interferon ${\alpha}$-1 by Recombinant Escherichia coli in Fed-batch Fermentation (유가식 배양에서 재조합 대장균으로부터 Interferon ${\alpha}$-1 생산에 산소 공급이 미치는 영향)

  • Yi, Jong-Ghil;Moon, Seok-Young;Kim, Young-Jun;Shin, Chul-Soo;Koo, Yoon-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.226-230
    • /
    • 2007
  • In order to achieve high-level expression of interferon-${\alpha}1$ (IFN-${\alpha}1$) during fed-batch fermentation of recombinant E. coli, effects of oxygen supply and induction temperature on the expression of recombinant proteins were evaluated. Supplementation of oxygen and its transfer into cells is one of the most important parameters involved in the design and operation of mixing-sparging equipment for bioreactors. Generally, higher oxygen supply stimulates cell growth of aerobic microorganism and consequently the amount of products is increased. In this study, the optimum aeration strategy for the higher production of IFN-${\alpha}1$ during fed-batch fermentation of recombinant E. coli was surveyed. The growth of the cells was also monitored with four different concentrations of dissolved oxygen (DO; limiting, 20%, 35%, 50%) conditions. The DO was controlled by varying aeration rates of air and pure oxygen. Oxygen uptake rate (OUR) and specific oxygen uptake rate (SOUR) were evaluated and compared for the enhanced growth and induction of the cells and IFN-${\alpha}1$, respectively. We confirmed that increased DO by additional oxygen supply, up to 35%, can improve the production of IFN-${\alpha}1$ during the fermentation.

Mixed Ionic and Electronic Conductivity of Lanthanum Sesquioxide (산화란타늄의 이온 및 전자전도도)

  • Keu Hong Kim;Chang Kwon Kang;Jong Hwan Lee;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.301-307
    • /
    • 1987
  • The electrical conductivity of highly pure polycrystalline sample of $La_2O_3$ has been measured at temperatures from $600^{\circ}C$ to $1,050^{\circ}C$ and oxygen pressure range of $1{\times}10^{-6}$ torr to $1{\times}10^2$ torr. The defect structure and semiconductor type are investigated by measuring the temperature and oxygen pressure dependences of electrical conductivity. Sintered $La_2O_3$ exhibits the electrical conductivities in the range of $1{\times}10^{-9}\;to\;1{\times}10^{-3}\;ohm^{-1}{\cdot}cm^{-1}$ under the above oxygen pressures. The oxygen pressure dependences on electrical conductivity are characterized by 5.3 at $1,000^{\circ}C$ and 5.7 at $700^{\circ}C$ and more higher values of 9∼14 below $700^{\circ}C$. The increase in n value with decreasing temperature indicates that a simple conduction mechanism does not exist in this material. The conduction carriers are not metal vacancy but oxygen ion at lower pressures. The conduction data indicate a significant ionic conduction at lower temperatures and electronic conduction at higher temperatures.

  • PDF

Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells (BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구)

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, In Sik;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.253-260
    • /
    • 2020
  • Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease that can be described by the occurrence of dementia due to a decline in cognitive function. The disease is characterized by the formation of extracellular and intracellular amyloid plaques. Amyloid beta (Aβ) is a hallmark of AD, and microglia can be activated in the presence of Aβ. Activated microglia secrete pro-inflammatory cytokines. Furthermore, S100A9 is an important innate immunity pro-inflammatory contributor in inflammation and a potential contributor to AD. This study examined the effects of metformin and α-LA on the inflammatory response and NLRP3 inflammasome activation in Aβ- and S100A9-induced BV-2 microglial cells. Metformin and α-LA attenuated inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, metformin and α-LA inhibited the phosphorylation of JNK, ERK, and p38. They activated the nuclear factor kappa B (NF-κB) pathway and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Moreover, metformin and α-LA reduced the marker levels of the M1 phenotype, ICAM1, whereas the M2 phenotype, ARG1, was increased. These findings suggest that metformin and α-LA are therapeutic agents against the Aβ- and S100A9-induced neuroinflammatory responses.

Induction of Oocyte Ovulation and Prostaglandin Synthesis by Gonadotropin and Phorbol Ester in vitro in Amphibian (Rana n igromacu la ta) Ovarian Follicles (뇌하수체 호르몬과 포르볼에스터에 의한 참개구리 난자의 배란과 프로스타글라딘 합성유도)

  • 장경자;나철호;소재목;이원교;권혁방
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.266-272
    • /
    • 1996
  • Experiments were carried out to ascertain whether gonadotropin or a phorbol ester (12-O-tetradecanoyl phorbol-13-acetate, TPA) induces oocyte ovulation and stimulates prostaglandin synthesis by Rana ovarian follicles in vitro. Rana nigromaculata collected from underground in spring were utilized for the present experiment. Treatment of frog pituitary homogenate (FPH) or TPA to ovarian fragments in culture induced oocyte ovulation in a dose dependent manner and stimulated prostaglandin F2a (PGF$_2$$\alpha$ synthesis. Both treatruents were more effective in inducing the ovulation and PGF$_2$$\alpha$ secretion by the follicles obtained in May than those in April. A Protein kinase C inactivator, 1-(5-isoquinolinyl-sulfonyl)-2-methyl-piperazine (H-7), or cyclooxygenase inhibitor, indomethacin (IM) suppressed the FPH- or TPA-induced PGF$_2$$\alpha$ production, but IM failed to suppress the FPH- or TPA-induced ovulation. Time course of oocyte ovulation and PGF$_2$$\alpha$ secretion by FPH and TPA treatments were very similar to each other. FPH stimulated progesterone secretion by the follicle but TPA failed to do so. Taken together, the data presented here suggest that protein kinase C (PKC) in follicle play a role in the ovulation process of Rana nigromaculata, probably via prostaglandin synthesis.

  • PDF

Effect of Dietary Fatty Acids on Fatty Acid Composition of Platelet Phospholipids, Thromboxane B2 Formation, and Platelet Aggregation in Men (식이 지방산이 혈소판 인지질의 지방산 조성, 혈장 Thromboxane B2의 농도 및 혈소판 응집에 미치는 영향)

  • 오은주
    • Journal of Nutrition and Health
    • /
    • v.32 no.4
    • /
    • pp.384-393
    • /
    • 1999
  • The degree of platelet aggregation, thromboxane B2(TXB2)formation and fatty acid composition of platelet phospholipids(PL) were investigated in 24 healthy male subjects who for five weeks consumed either corn oil(CO) rich in linoleic acid(LA), perilla oil (PO) rich in $\alpha$-linoleic acid($\alpha$-LAN), or canola oil(CNO) rich in oleic acid(OA) as a major fat source. Total fat intake was 30% of total calories and prescribed oil intake of each dietary group was 50% of the total fat intake. In the CO group, significantly decreased contents of polyunsaturated fatty acids(PUFA), n-6 PUFA, n-3 PUFA and eicosapentanoic acid(EPA) were observed, and significantly increased contents of OA and saturated fatty acids(SFA) were observed in platelet PL after 3 weeks and 5 weeks of dietary treatment. In the PO group, contents of OA and docosahexanoic acid(DHA) were increased, and the ratio of n-6/n-3 was decreased significantly in platelet PL after dietary treatment. The CNO group showed significatnlty decreased contents of PUFA, P/S ratio, n-6 PUFA, LA,(EPA+DHA)/arachidonic acid(AA), and significantly increased SFA contents after 3 weeks of the oil-based diet. The dietary-induced effects on fatty acid composition of platelet PL were observed mostly after 3 weeks of the oil-based diet. The dietary-induced effects on fatty acid composition of platelet PL were observed mostly after 3 weeks. Plasma TXB2 levels were increased after 3 and 5 weeks of dietary treatment. However, only the CO and CNO groups showed significantly increased plasma TXB2 levles after 3 and 5 weeks of dietary treatment. However, only the CO and CNO groups showed significantly increased plasma TXB2 levels after 5 weeks of experimental diets, when compared with initial values. Degree of platelet aggregation increased only in the CO group after dietary treatment. As a result, at week 5 the degree of platelet aggregation of the CO group was significantly higher than those of the PO and CNO groups. Among the three oil-based diets, the PO-based diet seems to have beneficial effects on atherosclerosis by influencing plasma TXB2 levels and the degree of platelet aggregation, while the CO-based diet showed the most adverse effects. Our results imply that plasma TXB2 levels might be affected by dietary fatty acid composition.

  • PDF