• Title/Summary/Keyword: ${\alpha}$- and ${\beta}$-galactosidases

Search Result 2, Processing Time 0.017 seconds

Production of ${\alpha}$- and ${\beta}$-Galactosidases from Bifidobacterium longum subsp. longum RD47

  • Han, Yoo Ri;Youn, So Youn;Ji, Geun Eog;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.675-682
    • /
    • 2014
  • Approximately 50% of people in the world experience abdominal flatulence after the intake of foods containing galactosides such as lactose or soybean oligosaccharides. The galactoside hydrolyzing enzymes of ${\alpha}$- and ${\beta}$-galactosidases have been shown to reduce the levels of galactosides in both the food matrix and the human gastrointestinal tract. This study aimed to optimize the production of ${\alpha}$- and ${\beta}$-galactosidases of Bifidobacterium longum subsp. longum RD47 with a basal medium containing whey and corn steep liquor. The activities of both enzymes were determined after culturing at $37^{\circ}C$ at pH 6.0 for 30 h. The optimal production of ${\alpha}$- and ${\beta}$-galactosidases was obtained with soybean oligosaccharides as a carbon source and proteose peptone no. 3 as a nitrogen source. The optimum pH for both ${\alpha}$- and ${\beta}$-galactosidases was 6.0. The optimum temperatures were $35^{\circ}C$ for ${\alpha}$-galactosidase and $37^{\circ}C$ for ${\beta}$-galactosidase. They showed temperature stability up to $37^{\circ}C$. At a 1 mM concentration of metal ions, $CuSO_4$ inhibited the activities of ${\alpha}$- and ${\beta}$-galactosidases by 35% and 50%, respectively. On the basis of the results obtained in this study, B. longum RD47 may be used for the production of ${\alpha}$- and ${\beta}$-galactosidases, which may reduce the levels of flatulence factors.

Influence of Gibberellic Acid on α-D-Galactosidase Activity in the Grape Berry

  • Kang, Han-Chul;Lee, Seon-Hwa;Kim, Jong-Bum
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.53-58
    • /
    • 2001
  • Glycosidase activities in the grape flesh (Marguerite) were assayed, and the order of activity was marked as follows: ${\alpha}$-D-galactosidase>${\alpha}$-D-mannosidase>${\alpha}$-D-glucosidase>${\beta}$-D-galactosidase>${\beta}$-D-glucosidase. Of these glycosidases, ${\alpha}$- and ${\beta}$-D-galactosidases were prominently expressed by the treatment of gibberellic acid, resulting in 56 and 238% increase of activity, respectively. Most of ${\alpha}$-D-galactosidase was found in the flesh texture, and the activity increase by gibberellic acid occurred mostly in this tissue. The increase in ${\alpha}$-D-galactosidase activity was dependent on the concentration of gibberellic acid treated, showing a positive correlation. Gibberellic acid affected the content of total protein in the grape flesh, 49% increase by 75 ppm treatment. Above this concentration, higher gibberellic acid level did not influence the protein expression. Specific activity of the ${\alpha}$-D-galactosidase still increased, showing 24% increase in activity. Grape flesh subjected by gibberellic acid (100 ppm) resulted in the increased activity against a natural substrate, stachyose, showing 55% increase in activity from the grapes treated with 100 ppm of gibberellic acid. Other natural substrates, such as melibiose and raffinose, were also considerably hydrolyzed, and the extent was similar to that of stachyose hydrolysis. During postharvest storage, ${\alpha}$-D-galactosidase activity in the grape flesh increased by 51% after 20 days and then declined slowly.

  • PDF