• Title/Summary/Keyword: ${\Omega}$-stable

Search Result 174, Processing Time 0.031 seconds

Effect Of Substituted-Fe for the Charge-discharge behavior Of $LiMn_{2}O_{4}$cathode materials (Fe 치환이$LiMn_{2}O_{4}$정극 활물질의 충방전 특성에 미치는 영향)

  • 정인성;김민성;구할본;손명모;이헌수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.548-551
    • /
    • 2000
  • Spinel phase LiF $e_{y}$M $n_{2-y}$ $O_4$samples are synthesized by calcining a LiOH.$H_2O$, Mn $O_2$and F $e_2$ $O_3$mixture at 80$0^{\circ}C$ for 36h in air. Preparing LiF $e_{y}$M $n_{2-y}$ $O_4$showed spinel phase with cubic phase. The ununiform distortion of the crystallite of the spinel LiF $e_{y}$M $n_{2-y}$ $O_4$was more stable than that of the pure. The discharge capacity of the cathode for the Li/LiF $e_{0.1}$M $n_{1.9}$ $O_4$cell at the first than that of the pure. The discharge capacity of the cathode for the Li/LiF $e_{0.1}$M $n_{1.9}$ $O_4$cell at the first cycle and at the 70th cycle was about 113 and 90mAh/g, respectively. This cell capacity was retained about 82% of the first cycle after 70th cycle. Impedance profile of this cell was more stable than that pure. The resistance, the capacitance and chemical diffusion coefficients of lithium ion showed approximately 80$\Omega$, 36133.87$\mu$F ; 1.4$\times$10$^{-8}$ c $m^2$ $s^{-1}$ , respectively. , respectively.ely.

  • PDF

The Characteristics of Chromiun Nitride Thin-Film Strain Gauges (크롬질화박막형 스트레인 게이지의 특성)

  • Seo, Jeong-Hwan;Kim, Il-Myung;Lee, Chae-Bong;Kim, Sun-Cheol;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1989-1991
    • /
    • 1999
  • This paper presents characteristics of CrN thin-film strain gauges, which were deposited on glass by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-$(5{\sim}25%)N_2$). The physical and electrical characteristics of these films investigated with the thickness range $3500{\AA}$ of CrN thin films, annealing temperature $(100{\sim}300^{\circ}C)$ and annealing $(24{\sim}72hr)$. The optimized condition of CrN thin-film strain gauges were thickness range of $3500{\AA}$ and annealing condition($300^{\circ}C$, 48 hr) in Ar-10 %$N_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauge is obtained a high resistivity, ${\rho}=1147.65{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=$-186ppm/^{\circ}C$ and a high temporal stability with a good longitudinal, 11.17. And change in resistance after annealing for the CrN thin-films were quitely linear and stable.

  • PDF

Electric Properties of Carbon Aerogel for Super Capacitors (카본 에어로겔을 이용한 초고용량 커패시터의 전기적 특성)

  • Han, Jeong-Woo;Lee, Kyeong-Min;Lee, Du-Hee;Lee, Sang-Won;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.660-666
    • /
    • 2010
  • Carbon aerogels are promising materials as electrodes for electrical double layer capacitors (EDLCs). An optimum process is presented for synthesis of nanoporous carbon aerogels via pyrolyzing resorcinol-formaldehyde (RF) organic aerogels, which could be cost-effectively manufactured from RF wet gels. The major reactions between resorcinol and formaldehyde include an addition reaction to form hydroxymethyl derivatives ($-CH_2OH$), and then a condensation reaction of the hydroxymethyl derivatives ($-CH_2-$)- and methylene ether ($-CH_2OCH_2-$) bridged compounds. The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM and TEM. The application of the resultant carbon for electrodes of electric double layers capacitor (EDLC) in organic TEABF4/ACN electrolyte indicated that the ESR, as low as 55 $m{\Omega}$, was smaller than for commercially activated carbons. And EDLC with carbon Aerogel electrodes has an excellent stable more than for commercially activated carbons.

Improvement in Electrical Characteristics of Solution-Processed In-Zn-O Thin-Film Transistors Using a Soft Baking Process (Soft-Baking 처리를 통한 용액 공정형 In-Zn-O 박막 트랜지스터의 전기적 특성 향상)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.566-571
    • /
    • 2017
  • A soft baking process was used to enhance the electrical characteristics of solution-processed indium-zincoxide (IZO) thin-film transistors (TFTs). We demonstrate a stable soft baking process using a hot plate in air to maintain the electrical stability and improve the electrical performance of IZO TFTs. These oxide transistors exhibited good electrical performance; a field-effect mobility of $7.9cm^2/Vs$, threshold voltage of 1.4 V, sub-threshold slope of 0.5 V/dec, and a current on/off ratio of $2.9{\times}10^7$ were measured. To investigate the static response of our solutionprocessed IZO TFTs, simple resistor load type inverters were fabricated by connecting a resistor (5 or $10M{\Omega}$). Our IZO TFTs, which were manufactured using the soft baking process at a baking temperature of $120^{\circ}C$, performed well at the operating voltage, and are therefore a good candidate for use in advanced logic circuits and transparent display backplanes.

Property and Microstructure Evolution of Nickel Silicides for Poly-silicon Gates (게이트를 상정한 니켈 실리사이드 박막의 물성과 미세구조 변화)

  • Jung Youngsoon;Song Ohsung;Kim Sangyoeb;Choi Yongyun;Kim Chongjun
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.301-305
    • /
    • 2005
  • We fabricated nickel silicide layers on whole non-patterned wafers from $p-Si(100)SiO_2(200nm)$/poly-Si(70 nm)mn(40 nm) structure by 40 sec rapid thermal annealing of $500\~900^{\circ}C$. The sheet resistance, cross-sectional microstructure, surface roughness, and phase analysis were investigated by a four point probe, a field emission scanning electron microscope, a scanning probe microscope, and an X-ray diffractometer, respectively. Sheet resistance was as small as $7\Omega/sq$. even at the elevated temperature of $900^{\circ}C$. The silicide thickness and surface roughness increased as silicidation temperature increased. We confirmed the nickel silicides iron thin nickel/poly-silicon structures would be a mixture of NiSi and $NiSi_2$ even at the $NiSi_2$ stable temperature region.

Analysis of PMOS Capacitor with Thermally Robust Molybdenium Gate (열적으로 강인한 Molybdenium 게이트-PMOS Capacitor의 분석)

  • Lee, Jeong-Min;Seo, Hyun-Sang;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.594-599
    • /
    • 2005
  • In this paper, we report the properties of Mo metal employed as PMOS gate electrode. Mo on $SiO_2$ was observed to be stable up to $900^{\circ}C$ by analyzing the Interface with XRD. C-V measurement was performed on the fabricated MOS capacitor with Mo Bate on $SiO_2$. The stability of EOT and work-function was verified by comparing the C-V curves measured before and after annealing at 600, 700, 800, and $900^{\circ}C$. C-V hysteresis curve was performed to identify the effect of fired charge. Gate-injection and substrate-injection of carrier were performed to study the characteristics of $Mo-SiO_2$ and $SiO_2-Si$ interface. Sheet resistance of Mo metal gate obtained from 4-point probe was less than $10\;\Omega\Box$ that was much lower than that of polysilicon.

Electrical Properties and Preparation of 6FDA/4-4'DDE Polyimide Thin Films by Vapor Deposition Polymerization Method (진공증착중합법을 이용한 6FDA/4-4'DDE 폴리이미드 박막의 제조와 전기적 특성)

  • Hwang, S.Y.;Lee, B.J.;Kim, H.G.;Kim, Y.B.;Park, K.S.;Lim, H.C.;Kang, D.H.;Park, K.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1487-1489
    • /
    • 1998
  • In this paper, thin films of PI were fabricated VDPM of dry processes which are easy to control the film's thickness and hard to pollute due to volatile solvents. From FT-lR, PAA thin films fabricated by VDP were changed to PI thin films by thermal curing. From SEM, AFM and Ellipsometer experimental, as the higher curing temperatures the films thickness decreases and reflectance increases. Therefore, Pl could be fabricated stable by increasing curing temperature. The relative permitivity and dissipation loss factor were 3.7 and 0.008. Also, the resistivity was about $1.05{\times}10^{15}{\Omega}cm$ at $30^{\circ}C$.

  • PDF

Electrical and Chemical Stability of Mo Gate Electrode for PMOS (PMOS에 적합한 Mo 전극의 전기적 화학적 안정성)

  • 노영진;이충근;홍신남
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.23-28
    • /
    • 2004
  • In this paper, the properties of Mo as PMOS gate electrodes were studied. The work-function of Mo extracted from C-V characteristic curves was appropriate for PMOS. To identify the electrical and chemical stability of Mo metal gate, the changes of work-function and EOT(Effective Oxide Thickness) values were investigated after 600, 700, 800 and 90$0^{\circ}C$ RTA(Rapid Thermal Annealing). Also it was found that Mo metal gate was stable up to 90$0^{\circ}C$ with underlying SiO$_2$through X-ray diffraction measurement. Sheet resistances of Mo metal gate obtained from 4-point probe were less than 10$\Omega$/$\square$ that was much lower than those of polysilicon.

Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate (플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성)

  • Jessie, Darma;Park, Byung-Wook;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF