• 제목/요약/키워드: ${\Delta}15$ desaturase

검색결과 8건 처리시간 0.022초

Production of Gamma-Linolenic Acid in Pichia pastoris by Expression of a Delta-6 Desaturase Gene from Cunninghamella echinulata

  • Wan, Xia;Zhang, Yinbo;Wang, Ping;Huang, Fenghong;Chen, Hong;Jiang, Mulan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1098-1102
    • /
    • 2009
  • Gamma-linolenic acid (GLA, C18:3 ${\Delta}^{6,9,12}$) is synthesized by a delta-6 fatty acid desaturase using linoleic acid (LA, C18:2 ${\Delta}^{9,12}$) as a substrate. To enable the production of GLA in the conventional yeast Pichia pastoris, we have isolated a cDNA encoding the delta-6 fatty acid desaturase from Cunninghamella echinulata MIAN6 and confirmed its function by heterogeneous expression in P. pastoris. Sequence analysis indicated that this cDNA sequence has an open reading frame of 1,404 bp, which encodes a 52 kDa peptide of 468 amino acids. This sequence has 64% identity to the previously reported delta-6 fatty acid desaturase from Rhizopus oryzae. The polypeptide has a cytochrome b5 domain at the N-terminus including the HPGG motif in the heme-binding region, as reported for other delta-6 fatty acid desaturases. In addition, this enzyme differs from other desaturases by the presence of three possible N-linked glycosylation sites. Analysis of the fatty acid composition demonstrated the accumulation of GLA to the level of 3.1% of the total fatty acids. Notably, the amounts of ginkgolic acid (C17:1) and palmitic acid (C16:0) were increased from 1.3% to 29.6% and from 15% to 33%, respectively. These results reveal that the modification of the fatty acid biosynthetic pathway by genetic manipulation in order to produce specific polyunsaturated fatty acids in P. pastoris is a promising technique.

Fermentation Process Development of Recombinant Hansenula polymorpha for Gamma-Linolenic Acid Production

  • Khongto, B.;Laoteng, K.;Tongta, A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권11호
    • /
    • pp.1555-1562
    • /
    • 2010
  • Development of the strain and the fermentation process of Hansenula polymorpha was implemented for the production of ${\gamma}$-linolenic acid ($GLA,\;C18:3{\Delta}^{6,9,12}$), an n-6 polyunsaturated fatty acid (PUFA) that has been reported to possess a number of health benefits. The mutated ${\Delta}^6$-desaturase (S213A) gene of Mucor rouxii was expressed in H. polymorpha under the control of the methanol oxidase (MOX) promoter. Without the utilization of methanol, a high-cell-density culture of the yeast recombinant carrying the ${\Delta}^6$-desaturase gene was then achieved by fed-batch fermentation under glycerol-limited conditions. As a result, high levels of the ${\Delta}^6$-desaturated products, octadecadienoic acid ($C18:2{\Delta}^{6,9}$), GLA, and stearidonic acid ($C18:4{\Delta}^{6,9,12,15}$), were accumulated under the derepression conditions. The GLA production was also optimized by adjusting the specific growth rate. The results show that the specific growth rate affected both the lipid content and the fatty acid composition of the GLA-producing recombinant. Among the various specific growth rates tested, the highest GLA concentration of 697 mg/l was obtained in the culture with a specific growth rate of 0.08 /h. Interestingly, the fatty acid profile of the yeast recombinant bearing the Mucor ${\Delta}^6$-desaturase gene was similar to that of blackcurrant oil, with both containing similar proportions of n-3 and n-6 essential fatty acids.

Delta 15 desaturase 유전자 억제에 의해 알파리놀렌산 함량이 낮은 들깨 육성 (Development of Perilla frutescens with Low Levels of Alpha-Linolenic Acid by Inhibition of a delta 15 desaturase Gene)

  • 김경환;이경렬;김정봉;이명희;이은경;김년희;이홍석;김송림;백정호;최인찬;지현소
    • 한국육종학회지
    • /
    • 제50권4호
    • /
    • pp.463-471
    • /
    • 2018
  • 들깨는 우리나라에서 재배되어온 대표적인 유지작물로 지질의 함량 중 알파리놀렌산의 함량이 60% 전후로 불포화도가 높아서 산패가 쉽게 일어나는 문제가 있다. 알파리놀렌산은 소포체 유래의 ${\Delta}15$ desaturase (FAD3)와 엽록체 유래의 ${\Delta}15$ desaturase (FAD7)에 의해서 합성된다. 엽록체 유래의 FAD7 유전자 발현의 손상없이 종자의 알파리놀렌산 함량을 낮추기 위해 소포체 유래 FAD3 유전자를 RNAi기법을 이용하여 발현을 억제하였다. 재배종인 엽실들깨의 배축을 이용하여 아그로박테리움 매개 형질전환법으로 제초제(바스타) 저항성을 가진 형질전환체 17개체를 획득하였다. 형질전환체는 0.3% (v/v) 바스타제초제를 이용하여 선발하였으며 Northern blot으로 FAD3 유전자의 발현이 억제되는 것을 확인하였다. 온실에서 수확한 12개체 종자 지방산 함량을 분석한 결과 알파리놀렌산 함량이 10-20% 2개체, 30-40% 7개체, 대조구와 비슷한 60%대 3개체를 획득하였다. 형질전환체의 $T_2$ 종자의 분리비와 지방산 조성을 분석한 결과 동형접합체 계통에서 6-10% 알파리놀렌산 함량을 보였으며 이형접합계통은 20-26% 알파리놀렌산 함량을 나타내어 동형으로 고정시 FAD3 유전자 발현이 상당히 강력히 억제됨을 확인할 수 있었다. 들기름의 지방산 중 알파리놀렌산 함량의 감소는 들깨의 산패를 방지하고 감마리놀렌산 등의 고가의 건강기능성 지방산 생산에 활용할 수 있을 것으로 기대된다.

Characterization of Carotenoid Biosynthetic Pathway Using Viviparous Mutant Embryos in Maize ( Zea mays L. )

  • Lee, Byung-Moo
    • Plant Resources
    • /
    • 제1권1호
    • /
    • pp.33-37
    • /
    • 1998
  • Carotenoid compounds in embryos of wild-type(WT) and viviparous mutants of maize(Zea mays L.) were analyzed using high performance liquid ehromatography (HPLC) with a photodiode array detector. Zeaxanthin accumulates in WT embryos as the major carotenoid. Phytoene accumulates in vp2 and vp5. Phytofluene in w3 and ${\xi}$-carotene in the vp9 mutant embryos. This indicates that the vp2 and vp5 mutants impair phytoene desaturase from 15-cis-phytoene to 15-cis-phytofluene. The w3 mutant has neither an isomerase from 15-cis-phytofluene to all-trans-phytofuene nor phytofluene desaturase from phytofluene to ${\xi}$-carotene. The vp9 mutant does not have the ${\xi}$-carotene desaturase from ${\xi}$-carotene to lycopene. Our analysis shows that the terminal carotenoid. ${\gamma}$-carotene(${\beta},{\Psi}$-carotene), accumulates in the vp7 mutant embryos. The ${\varepsilon}$-carotene(${\varepsilon},{\varepsilon}$-carotene), a product of ${\delta}$-carotene(${\varepsilon},{\Psi}$-carotene) in some plants, however, has not been found in maize embryos. The vp7 mutant impairs a cyclization step from ${\gamma}$-carotene to both ${\beta}$-carotene and ${\alpha}$-carotene. We suggest that monocyclic ${\gamma}$-carotene is the sole precursor of both bicyclic ${\beta}$-carotene(${\beta},{\beta}$-carotene) and ${\alpha}$-carotene(${\beta},{\varepsilon}$-carotene) in maize.

  • PDF

땅콩에서 고 올레인산 형질관련 분자마커의 선발 (Development of Selectable Marker of High Oleate Trait in Peanut (Arachis hypogaea L.))

  • 양기웅;배석복;박장환;이명희;정찬식;손정희;박금룡
    • 한국육종학회지
    • /
    • 제42권5호
    • /
    • pp.507-514
    • /
    • 2010
  • 땅콩의 delta 12 fatty acid desaturase 유전자의 염기서열에서 고 올레인산을 함유하는 F435를 선발할 수 있는 PCR 기초 분자표지마커를 제작하였다. 본 연구는 포인트 뮤테이션(point mutation)의 결과로 나타나는 고 올레인산을 SNP 마커를 이용하여 하나의 염기서열차이(아데닌 삽입)를 이용하여 판별할 수 있는 분자마커이다. 제작한 마커가 고 올레인산 관련 특이 마커인지 확인하기 위하여, 일반 땅콩 9 품종과 F435를 PCR 후 아가로스 겔 상에서 확인하여 고 올레인산 특이 분자마커임을 확인하였고, 조평 ${\times}$ F435의 $F_2$ 교배조합 41 계통을 이용하여 분리양상을 확인하였다. 그 결과 지방산 분석을 하지 않고도 고 올레인산 함유 계통을 손쉽게 선발할수 있었다. 특히, 헤테로 형질을 나타내는 계통도 선발 가능하였다. 분자마커의 결과가 지방산 수준에서 일치하는지 확인하기 위해 NIR 및 가스크로마토그래피 분석결과를 알아보았데 고 올레인산 관련 분자표지마커가 NIR 및 가스크로마토그래피 분석결과와 일치하였다. 고 올레인산 땅콩의 유전적 차이를 이용하여 분자표지마커를 개발 함으로서 고 올레인산 땅콩의 정확한 선발과 품종을 개발하는데 있어서 세대단축의 효과를 가져올 것이다.

생리활성지방산;그 대사와 기능 (Physiologically Active Fatty Acids their Metabolism and Function)

  • 녹산광
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.15-24
    • /
    • 1996
  • Essentiality was proposed in the field of lipid by Burr and Burr in 1929. When rats were raised on the fat-free diet, their growth retarded and their skin and tails showed the characteristic deficient symptoms, which were relieved by the addition of ${\omega}6(n-6)$ polyunsaturated fatty acids as linoleic(LA) and arachidonic(AA) acids to the basal diet. LA is dehydrogenated to ${\gamma}-linolenic$ acid(GLNA) by ${\Delta}6$ desaturase, then GLNA is 2 carbon chain elongated by elongase to $dihomo-{\gamma}-linolenic$ acid(DGLNA), which is desaturated by ${\Delta}5$ desaturase to AA. These acids are called LA family or ${\omega}6(n-6)$ polyunsaturated fatty acids(PUFA). ${\alpha}-Linolenic$ acid(ALNA) is converted through the series of desaturation and elongation steps to docosahexaenic acid(DHA) via eicosapentaenoic acid(EPA). These acids belong to ALNA family or ${\omega}3(n-3)$PUFA. Human who consume large amounts of EPA and DHA, which are present in fatty fish and fish oils, have increased levels of these two fatty acids in their plasma and tissue lipids at the expense of LA and AA. Alternately, vegetarians, whose intake of LA in high, have more elevated levels of LA and AA and lower levels of EPA and DHA in plasma lipids and in cell membranes than omnivores. AA and EPA are metabolized to substances called eicosanoids. Those derived form AA are known as prostanocids(prostaglandins and prostacyclins) of the 2-types and leukotrienes of the 4-series, whereas those derived from EPA are known as prostanoids of the 3-types and leukotrienes of the 5-series. DGLNA is a precursor of the 1-types of prostaglandins. The metabolites of AA and EPA have competitive functions. Ingestion of EPA from fish or fish oil replaces AA from membrane phospholipids in practically all cells. So this leads to a more physiological state characterized by the production of proatanoids and leukotrienes that have antithrombic, antichemotactic, antivasoconstrictive and antiinflammatory properties. It is evident that ${\omega}3$ fatty acids can affect a number of chronic diseases through eicosanoids alone.

Genetics and Breeding for Modified Fatty Acid Profile in Soybean Seed Oil

  • Lee, Jeong-Dong;Bilyeu, Kristin D.;Shannon, James Grover
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.201-210
    • /
    • 2007
  • Soybean [Glycine max(L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates(palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increased from 23 to > 55%, and linolenic acid reduced from 8 to < 3%. Reduced palmitic acid(16:0) is conditioned by three or more recessive alleles at the Fap locus. QTLs for reduced palmitic acid have mapped to linkage groups(LGs) A1, A2, B2, H, J, and L. Genes at the Fad locus control oleic acid content(18:1). Six QTLs($R^2$=4-25%) for increased 18:1 in N00-3350(50 to 60% 18:1) explained four to 25% of the phenotypic variation. M23, a Japanese mutant line with 40 to 50% 18:1 is controlled by a single recessive gene, ol. A candidate gene for FAD2-1A can be used in marker-assisted breeding for high 18:1 from M23. Low linolenic acid(18:3) is desirable in soy oil to reduce hydrogenation and trans-fat accumulation. Three independent recessive genes affecting omega-3 fatty acid desaturase enzyme activity are responsible for the lower 18:3 content in soybeans. Linolenic acid can be reduced from 8 to about 4, 2, and 1% from copies of one, two, or three genes, respectively. Using a candidate gene approach perfect markers for three microsomal omega-3 desaturase genes have been characterized and can readily be used in for marker assisted selection in breeding for low 18:3.

  • PDF

Molecular Modification of Perilla Lipid Composition

  • Hwang, Young-Soo;Kim, Kyung-Hwan;Hwang, Seon-Kap;Lee, Sun-Hwa;Lee, Seong-Kon;Kim, Jung-Bong;Park, Sang-Bong;Tom Okita;Kim, Donghern
    • Journal of Plant Biotechnology
    • /
    • 제1권1호
    • /
    • pp.20-30
    • /
    • 1999
  • In order to modify lipid production of Perilla qualitatively as well as quantitatively by genetic engineering, genes involved in carbon metabolism were isolated and characterized. These include acyl-ACP thioesterases from Perilla frutescens and Iris sp., four different $\beta$-ketoacyl- ACP synthases from Perilla frutescens, and two $\Delta$15 a-cyl-ACP desaturases(Pffad7, pffad3). Δ15 acyl-ACP desa turase (Δ15-DES) is responsible for the conversion of linoleic acid (18:2) to $\alpha$-linolenic acid (ALA, 18:3). pffad 3 encodes Δ15 acyl-desaturase which is localized in ER membrane. On the other hand, Pffad7 encodes a 50 kD plastid protein (438 residues), which showed highest sequence similarity to Sesamum indicum fad7 protein. Northern blot analysis revealed that the Pffad7 is highly expressed in leaves but not in roots and seeds. And Pffad3 is expressed throughout the seed developmental stage except very early and fully mature stage. We constructed Pffad7 gene under 355 promoter and Pffad3 gene under seed specific vicillin promoter. Using Pffad7 construct, Perilla, an oil seed crop in Korea, was transformed by Agrobacterium leaf disc method. $\alpha$-linolenic acid contents increased in leaves but decreased in seeds of transgenic Perilla. Currently, we are transforming Perilla with Pffad3 construct to change Perilla seed oil composition. We isolated three ADP-glucose pyrophosphorylase (AGP) genes from Perilla immature seed specific cDNA library. Nucleotide sequence analysis showed that two of three AGP (Psagpl, Psagp2) genes encode AGP small subunit polypeptides and the remaining (Plagp) encodes an AGP large subunit. PSAGPs, AGP small subunit peptide, form active heterotetramers with potato AGP large subunit in E. coli expressing plant AGP genes.

  • PDF