• 제목/요약/키워드: $^3H-nitrendipine$ binding

검색결과 5건 처리시간 0.02초

Ca-dependent Alteration in Basal Tone, Basal $^{45}Ca$ Uptake and $^3H-nitrendipine$ Binding in the Aorta of Spontaneously Hypertensive Rats

  • Chang, Seok-Jong;Jeon, Byeong-Hwa;Kim, Hoe-Suk
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.27-35
    • /
    • 1994
  • We investigated the alterations in basal tone of aortic strips by changing the Ca concentration, basal $^{45}Ca$ uptake and $^3H-nitrendipine$ binding of the single cells of aortic smooth muscles in the spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. While the basal tone of the aortic strips in WKY rats was not affected by alteration of Ca concentration, that in SHR was decreased by the removal of Ca from the bath solution and was recovered by the restoration of Ca to normal levels. This contraction increased in a Ca concentration-dependent manner and reached a maximum at 2 mM Ca. The basal tone of aorta in SHR was suppressed by verapamil $(10^{-6}M)$. The basal tone of aorta in SHR increased about 50% in the strips of endothelial rubbing, compared with that of intact endothelium. Basal $^{45}Ca$ uptake in the aortic single smooth muscle cells of SHR was greater than that of WKY (p<0.01), Specific bindings of $[^3H]nitrendipine$ in the aortic single smooth muscles of SHR and WKY were saturable. The dissociation constant $(K_d)\;was\;0.71{\pm}0.15\;and\;1.18{\pm}0.08nM$ SHR, respectively, and the difference in $K_d$ between two strains was statistically significant (p<0.03). The maximal binding capacity $(B_{max})\;was\;34.6{\pm}3.2\;and\;47.4{\pm}4.3\;fmol/10^6$ SHR respectively, and the difference of $(B_{max})$ between two strains was statistically significant (p<0.05). from the above results, it is suggested that the increase of Ca influx via potential-operated Ca channels and the increase of the number of dihydropyridine-sensitive Ca channels contribute to high basal tone of the aortic strips in SHR.

  • PDF

Effect of bay K 8644, A Calcium Channel Agonist, on Dog Cardiac Muscarinic Receptors

  • Lee, Shin-Woong;Park, Young-Joo;Lee, Jeung-Soo
    • Archives of Pharmacal Research
    • /
    • 제14권3호
    • /
    • pp.271-278
    • /
    • 1991
  • To investigate further whether the effects of the dihydropyridine (DHP) drugs on calcium channels are related to those of these drugs on muscarinic receptors, the binding characteristics of the DHP calcium channel agonist, Bay K 8644, on muscarinic receptors and calcium channels were compared to those of the DHP calcium channel antagonists, nicardipine and nimodipine in the dog cardiac sarcolemma. Bay K 8644, nicardipine and nimodipine inhibited the specific $[^3H]$QNB binding with $K_i$ values of 16.7\mu{M}$, 3.5\mu{M}$ and 15.5\mu{M}$ respectively. Saturation data of $[^3H]$QNB binding with $K_i$ VALUES OF 16.7\mu{M}$ 3.5\mu{M}$ and 15.5\mu{M}$ respectively. Saturation data of $[^3H]$QNB binding in the presence of these DHP drugs showed this inhibition to be competitive. Bay K 8644, like nicardipine and nimodipine, blocked the binding of $[^3H]$nitrendipine to the high affinity DHP binding sites, but atropine did not, indicating that the muscarinic receptors and the DHP binding sites m but atropine did not, indicating that the muscarinic receptors and the DHP bindings sites on calcium channels are distinct. The $K_i$ value of Bay K 8644 for the DHP binding sites was 4nM. Nicardipine and nimodipine $(K_i:0.1-0.2\;nM)$ were at least 20 times more potent than Bay K 8644 in inhibiting $[^3H]$ nitrendipine binding. Thus, the muscarinic receptors were about 4000 times less sensitive than thes high afinity DHP binding sites to Bay K 8644. These results suggest that the DHP calcium agonist Bay K 8644 binds directly to the muscarinic receptors but its interaction with the muscarinic receptors is not related to its binding to the DHP binding sites on calcium channels.

  • PDF

Thyroid Hormone-Induced Alterations of Ryanodine and Dihydropyridine Receptor Protein Expression in Rat Heart

  • Kim, Hae-Won;Park, Mi-Young;Lee, Eun-Hee;Cho, Hyoung-Jin;Lee, Hee-Ran
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.329-337
    • /
    • 1999
  • Thyroid hormone-induced cellular dysfunctions may be associated with changes in the intracellular $Ca^{2+}$ concentration. The ryanodine receptor, a $Ca^{2+}$ release channel of the SR, is responsible for the rapid release of $Ca^{2+}$ that activates cardiac muscle contraction. In the excitation-contaction coupling cascade, activation of ryanodine receptors is initiated by the activity of sarcolemmal $Ca^{2+}$ channels, the dihydropyridine receptors. In hyperthyroidism left ventricular contractility and relaxation velocity were increased, whereas these parameters were decreased in hypothyroidism. The mechanisms for these changes have been suggested to include alterations in the expression and/or activity levels of various proteins. In the present study, quantitative changes of ryanodine receptors and the dihydropyridine receptors, and the functional consequences of these changes in various thyroid states were investigated. In hyperthyroid hearts, $[^3H]ryanodine$ binding and ryanodine receptor mRNA levels were increased, but protein levels of ryanodine were not changed significantly. However, the above parameters were markedly decreased in hypothyroid hearts. In case of dihydropyridine receptor, there were a significant increase in the mRNA and protein levels, and [3H]nitrendipine binding, whereas no changes were observed in these parameters of hypothyroid hearts. Our findings indicate that hyperthyroidism is associated with increases in ryanodine receptor and dihydropyridine receptor expression levels, which is well correlated with the ryanodine and dihydropyridine binding. Whereas opposite changes occur in ryanodine receptor of the hypothyroid hearts.

  • PDF

Unchanged Protein Level of Ryanodine Receptor but Reduced $[^3H]$ Ryanodine Binding of Cardiac Sarcoplasmic Reticulum from Diabetic Cardiomyopathy Rats

  • Lee, Eun-Hee;Seo, Young-Ju;Kim, Young-Hoon;Kim, Hae-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권5호
    • /
    • pp.397-405
    • /
    • 2001
  • The ryanodine receptor, a $Ca^{2+}$ release channel of the sarcoplasmic reticulum (SR), is responsible for the rapid release of $Ca^{2+}$ that activates cardiac muscle contraction. In the excitation-contraction coupling cascade, activation of SR $Ca^{2+}$ release channel is initiated by the activity of sarcolemmal $Ca^{2+}$ channels, the dihydropyridine receptors. Previous study showed that the relaxation defect of diabetic heart was due to the changes of the expressional levels of SR $Ca^{2+}$ATPase and phospholamban. In the diabetic heart contractile abnormalities were also observed, and one of the mechanisms for these changes could include alterations in the expression and/or activity levels of various $Ca^{2+}$ regulatory proteins involving cardiac contraction. In the present study, underlying mechanisms for the functional derangement of the diabetic cardiomyopathy were investigated with respect to ryanodine receptor, and dihydropyridine receptor at the transcriptional and translational levels. Quantitative changes of ryanodine receptors and the dihydropyridine receptors, and the functional consequences of those changes in diabetic heart were investigated. The levels of protein and mRNA of the ryanodine receptor in diabetic rats were comparable to these of the control. However, the binding capacity of ryanodine was significantly decreased in diabetic rat hearts. Furthermore, the reduction in the binding capacity of ryanodine receptor was completely restored by insulin. This result suggests that there were no transcriptional and translational changes but functional changes, such as conformational changes of the $Ca^{2+}$ release channel, which might be regulated by insulin. The protein level of the dihydropyridine receptor and the binding capacity of nitrendipine in the sarcolemmal membranes of diabetic rats were not different as compared to these of the control. In conclusion, in diabetic hearts, $Ca^{2+}$ release processes are impaired, which are likely to lead to functional derangement of contraction of heart. This dysregulation of intracellular $Ca^{2+}$ concentration could explain for clinical findings of diabetic cardiomyopathy and provide the scientific basis for more effective treatments of diabetic patients. In view of these results, insulin may be involved in the control of intracellular $Ca^{2+}$ in the cardiomyocyte via unknown mechanism, which needs further study.

  • PDF

Pharmacological Characterization of Synthetic Tetrahydroisoquinoline Alkaloids, YS 51 and YS 55, on the Cardiovascular System

  • Chang, Ki-Churl;Kang, Young-Jin;Lee, Young-Soo;Chong, Won-Seog;Choi-Yun, Hey-Sook;Lee, Duck-Hyong;Ryu, Jae-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.461-469
    • /
    • 1998
  • Tetrahydroisoquinoline (THI) alkaloids can be considered as cyclized derivatives of simple phenylethy-lamines, and many of them, especially with 6,7-disubstitution, demonstrate relatively high affinity for catecholamines. Two -OH groups at 6 and 7 positions are supposed to be essential to exert ?${\beta}-receptor$ activities. However, it is not clear whether -OH at 6,7 substitution of THIs also shows ?${\alpha}-adrenoceptor$ activities. In the present study, we investigated whether -OH or $-OCH_3$ substitutions of 6,7 position of THIs differently affect the ?1-adrenoceptor affinity. We synthesized two 1-naphthylmethyl THI alkaloids, $1-{\beta}-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline$ HBr (YS 51) and $1-{\beta}-naphthylmethyl-6, 7-dimethoxy-1,2,3,4-tetrahydroisoquinoline$ HCl (YS 55), and their pharmacological actions on ?${\alpha}_1-adrenoceptor$ were compared. YS 51 and YS 55, concentration-dependently relaxed endothelium-denuded rat thoracic aorta precontracted with phenylephrine (PE, 0.1 ${\mu}M$) in which $pEC_{50}$ were $5.89{\pm}0.21$ and $5.93{\pm}0.19$, respectively. Propranolol (30 nM) did not affect the relaxation-response curves to YS 51 and YS 55. Concentration-response curves to PE were shifted to right by the pretreatment with YS 51 or YS 55. The $pA_2$ values of YS 51 and YS 55 showed $6.05{\pm}0.24$ and $5.88{\pm}0.16$, respectively. Both probes relaxed KCl (65.4 mM)-contracted aorta and inhibited $CaCl_2-induced$ contraction of PE-stimulated endothelium- denuded rat thoracic aorta in $Ca^{2+}-free$ solutions. In isolated guinea pig papillary muscle, 1 and 10 ${\mu}M$ YS 51 increased contractile force about 4- and 8- fold over the control, respectively, along with the concentration-dependent increment of cytosolic $Ca^{2+}$ ions. While, 10 ${\mu}M$ YS 55 reduced the contractile force about 50 % over the control and lowered the cytosolic $Ca^{2+}$ level, in rat brain homogenates, YS 51 and YS 55 displaced $[^3H]prazosin$ binding competitively with Ki 0.15 and 0.12 ${\mu}M$, respectively. However, both probes were ineffective on $[^3H]nitrendipine$ binding. Therefore, it is concluded that two synthetic naphthylmethyl-THI alkaloids have considerable affinity to ?1-adrenenoceptors in rat aorta and brain.

  • PDF