• Title/Summary/Keyword: $^1H$-MRS

Search Result 233, Processing Time 0.026 seconds

${\beta}$-1,4-Xylosidase Activity of Leuconostoc Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리된 Leuconostoc 속 젖산균의 ${\beta}$-1,4-xylosidase 효소생산 특성)

  • Jang, Mi-Hee;Kim, Myoung-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • The ${\beta}$-xylosidase (EC 3.2.1.37) production capabilities of lactic acid bacteria in the genus Leuconostoc, isolated from a variety of kimchi (fermented vegetables), were examined. The intracellular levels of ${\beta}$-xylosidase were similar to the extracellular levels, when most Leuconostoc lactic acid bacteria were grown in a medium containing xylose as the carbon source. Intracellular ${\beta}$-xylosidase with a maximum activity of $1.2{\pm}0.1units/mL$ (mean${\pm}$standard error) was obtained from Leuconostoc lactis KCTC 13344, which was isolated from fermented Chinese cabbage. The optimum reaction conditions for Leu. lactis KCTC 13344 ${\beta}$-xylosidase activity were pH 6.0 and $30^{\circ}C$, and the addition of most divalent cations, except zinc, to the reaction mixture resulted in a slight increase in enzyme activity. Compared with a media containing other carbon sources, the ${\beta}$-xylosidase activity was 5 times higher when Leu. lactis KCTC 13344 was grown in a medium containing xylose as carbon source. Zymographic analysis indicated that the synthesis of Leu. lactis KCTC 13344 ${\beta}$-xylosidase (approximate size, 64 kDa) is induced by xylose. A maximum intracellular ${\beta}$-xylosidase activity of $7.1{\pm}0.3units/mL$ was obtained in a batch cultivation in an MRS medium containing 30 g/L xylose.

Assessment of Abnormality in Skeletal Muscle Metabolism in Patients with Chronic Lung Desease by $^{31}P$ Magnetic Resonance Spectroscopy ($^{31}P$ 자기 공명분석법을 이용한 만성 폐질환 환자에서의 골격근대사 이상에 관한 연구)

  • Cho, Won-Kyoung;Kim, Dong-Soon;Lim, Tae-Hwan;Lim, Chae-Man;Lee, Sang-De;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.583-591
    • /
    • 1997
  • The functional derangement of skeletal muscles which may be attributed to chronic hypoxia has been accepted as a possible mechanism of exercise impairment in patients with chronic obstructive pulmonary disease (COPD). The metabolic changes in skeletal muscle in patients with COPD are characterized by impaired oxidative phosphorylation, early activation of anaerobic glycolysis and excessive lactate and hydrogen ion production with exercise. But the cause of exercise limitation in patients with chronic lung disease without hypoxia has not been known. In order to evaluate the change in the skeletal muscle metabolism as a possible cause of the exercise limitation in chronic lung disease patients without hypoxia, we compared the muscular metabolic data of seven male patients which had been derived from noninvasive $^{31}P$ magnetic resonance spectroscopy(MRS) with those of five age-matched normal male control persons. $^{31}P$ MRS was studied during the sustained isometric contraction of the dominant forearm flexor muscles up to the exhaustion state and the recovery period. Maximal voluntary contraction(MVC) force of the muscle was measured before the isometric exercise, and the 30% of MVC force was constantly loaded to each patient during the isometric exercise. There were no differences of intracellular pH (pHi) and inorganic phosphate/phosphocreatine(Pi/PCr) at baseline, exhaustion state and recovery period between two groups. But pHi during the exercise was lower in patients group than the control group (p < 0.05). Pi/PCr during the exercise did not show significant difference between two groups. These results suggest that the exercise limitation in chronic lung disease patients without hypoxia also could be attributed to the abnormalities in the skeletal muscle metabolism.

  • PDF

Sequential 1H MR Spectroscopy(MRS) Studies of Kaolin-Induced Hydrocephalic Cat Brain (Kaolin 유발 고양이 수두증 모델에서 양자 자기공명 분광상의 경시적 변화)

  • Kim, Myung Jin;Hwang, Sung Kyoo;Hwang, Jeong Hyun;Chang, Yongmin;Kim, Yong Sun;Kim, Seung Lae
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.11
    • /
    • pp.1421-1428
    • /
    • 2000
  • Objectives : The aim of this study is to evaluate the sequential metabolic changes in experimental hydrocephalus and the clinical applicability to the diagnosis and prognosis of hydrocephalus using proton MR spectroscopy. Methods : Hydrocephalus was experimentally induced in 30 cats(2-3kg body weight) by injecting 1ml of sterile kaolin suspension(250mg/ml) into the cisterna magna. Proton MRS was performed with a 1.5 T MRI/MRS unit (Vision Plus, Siemens) at pre-treatment and at 1, 3, 7, 14, 21, and 28 days after the kaolin injection. PRESS(TR/TE=1500/270msec) technique was employed. The major metabolites which include N-acetyl aspartate (NAA), creatine(Cr), choline(Cho), and lactate(Lac) were quantitatively analyzed and the relative concentrations ratios were evaluated. Multislice $T_2$-weighted images were also obtained using fast spin echo sequence(TR/TE= 2500/96msec) to monitor the morphologic changes along with progression of hydrocephalus. Results : Hydrocephalus was successfully induced in all 30 cats. Twenty five cats died within 3 days and one at the end of the second week. In all animals, the NAA/Cr ratios initially decreased during the acute stage. In 4 surviving cats, the NAA/Cr ratios initially decreased during the acute stage(<14 days) and then gradually increased to the prekaolin level as follows : pre-kaolin($1.49{\pm}0.04$), day 1($1.11{\pm}0.07$), day 7($1.17{\pm}0.04$), day 14($1.40{\pm}0.03$), day 21 ($1.46{\pm}0.06$), day 28($1.43{\pm}0.03$). These levels were relatively well correlated with the symptomatologic improvement. Lactate peak, which reflects the evidence of ischemia, did not appear throughout the entire period except in one case which expired at the end of the second week. Conclusions : The NAA/Cr ratio of the sequential proton MRS in kaolin-induced hydrocephalic cats reflects a metabolic aspect of the hydrocephalus at each stage. A decreased NAA level at the early stage is from both neuronal and axonal damage which may provide diagnostic information in the acute stage of hydrocephalus. In addition, the initial fall of NAA/Cr ratio and recovery in the late stage, when no lactate peak emerges, may suggest that the main insult of the parenchyma is not to the neuron itself but to the axon, which may be related to a good prognosis. However, emergence of the lactate peak and unrecoverable NAA/Cr at the end of the acute phase may be a poor prognostic factor. In the chronic stage, recovery of NAA/Cr ratio may provide a diagnostic clue for the differentiation between hydrocephalus and cortical atrophy.

  • PDF

Effects of Scutellaria baicalensis and Phellodendron amurense Extracts on Growth of Lactic Acid Bacteria and Kimchi Fermentation (황금과 황백 추출물이 젖산균 증식 및 김치 숙성에 미치는 영향)

  • 박민경;정광심;인만진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.420-426
    • /
    • 2004
  • In this study, among 10 medicinal plants extracted with 50%-ethanol, antimicrobial activities measured by paper disc method were showed in Scutellaria baicalensis (Sb) on Leu mesenteroides and in Phellodendron amurene (Pa) on Lac. plantarum and Leu. mesenteroides. While 0.05∼0.2% of Pa extracts showed also relatively strong growth inhibition of both strains of lactic acid bacteria cultured in MRS broth for 24 hours at 3$0^{\circ}C$, Sb extract at concentration of 0.1% showed similar inhibitory effect on Leu mesenteroides to that of 0.05% of Pa extract. Addition of 0.02∼0.04% of Pa extracts to kimchi lowered effectively extents of pH decrease and acidity increase, and numbers of lactic acid bacteria and total bacteria compared to those of control during fermentation at 4$^{\circ}C$. This extending effect on fermentation period was obtained by adding 0.04% in case of Sb. Mixed extracts of Pa and Sb (Pa-Sb) by ratio 1 : 1 delayed also fermentation of kimchi at 0.03∼0.04%. In sensory evaluation kimchi containing 0.04% of Pa extract were less sour than kimchi containing 0.02% of Sb extract and/or control at late stage of fermentation.

Comparison of the Biochemical Activities of Commercial Yogurts and Lactobacillus acidophilus-containing Yogurt (시판용 요구르트와 Lactobacillus acidophilus 요구르트의 생화학적 활성의 비교)

  • Ryu, Jae-Ki;Lee, Hyeong-Seon;Koo, Bon-Kyung;Kim, Hyun-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.2
    • /
    • pp.59-64
    • /
    • 2015
  • Lactic acid-producing bacteria such as Lactobacillus spp. function to ferment carbohydrates and produce ATP. Such Lactobacillus spp. are used for the production of commercial yogurts. Lactobacillus spp. are beneficial to the intestinal tract, and Lactobacillus acidophilus-containing yogurts have received considerable attention because of their preventive effects against early-stage cancer of the large intestine. In this study, lactic acid-producing bacteria were cultured from three different groups: commercial solid yogurt (for eating), commercial liquid yogurt (for drinking), and Lactobacillus acidophilus-containing yogurt. We first determined the optimum culture conditions for Lactobacillus spp. and then analyzed turbidity and pH in order to compare the growth abilities and lactic acid-production capacities among the groups. Finally, high-performance liquid chromatography was used to measure the lactic acid content in the culture supernatants, and the antibacterial activities against Staphylococcus aureus and Escherichia coli were compared among the three groups. The optimum culture conditions for Lactobacillus spp. were MRS medium at $25^{\circ}C$, for 24 h. The highest turbidity was found in L. acidophilus-containing yogurt, followed by liquid yogurt and solid yogurt. Similarly, the highest lactic acid production ability was found in L. acidophilus-containing yogurt, followed by liquid yogurt and solid yogurt. Culture supernatants from the three groups did not show any antibacterial activity towards S. aureus; however, supernatants derived from L. acidophilus-containing yogurt resulted in a 1.8 mm inhibitory zone against E. coli in a paper disk diffusion test. These results revealed the high level of lactic acid-production capacity and antibacterial activity in L. acidophilus-containing yogurt.

Production of Phenyl Lactic Acid (PLA) by Lactic Acid Bacteria and its Antifungal Effect

  • Song, June-Seob;Jang, Joo-Yeon;Han, Chang-Hoon;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.125-131
    • /
    • 2015
  • Phenyllactic acid (PLA) which is known as antimicrobial compound can be synthesized through the reduction of phenylpyruvic acid (PPA) by lactate dehydrogenase (LDH) of lactic acid bacteria (LAB). LAB producing PLA was isolated from Korea Kimchi and identified to Lactobacillus plantarum SJ21 by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. plantarum SJ21 was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against four fungal pathogens (Rhizoctonia solani, Aspergillus oryzae, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23mM in CFS when L. plantarum SJ21 was grown in MRS broth containing 5mM PPA for 16 h. PLA production also could be promoted by the supplement of PPA and phenylalanine in MRS broth, but inhibited by the supplement of 4-hydroxyphenylpyruvic acid and tyrosine as precursors. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. plantarum SJ21 with average growth inhibitions ranging from 27.32% to 69.05% (p<0.005), in which R. solani was the most sensitive to 69.05% and followed by B. cinerea, C. aculatum, and A. oryzae. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range from $0.35mg\;mL^{-1}$ (2.11 mM) to $0.7mg\;mL^{-1}$ (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens was not affected by heating or protease treatment. However, pH modification in CFS to 6.5 caused an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS were caused by acidic compounds like PLA or organic acids rather than proteins or peptides molecules.

Isolation and Characterization of Lactobacillus brevis AML15 Producing γ-Aminobutyric acid ((γ-Aminobutyric acid를 생산하는 Lactobacillus brevis AML15의 분리 및 특성)

  • Shin, Ji-Won;Kim, Dong-Geol;Lee, Yong-Woo;Lee, Hyoung-Seok;Shin, Kee-Sun;Choi, Chung-Sig;Kwon, Gi-Seok
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.970-975
    • /
    • 2007
  • For the screening of ${\gamma}-aminobutyric$ acid (CABA)-producing bacteria, 86 bacterial strains which produce GABA were isolated from Kimchi and Salted fisk .Among these, three strains designated AML15, AML45-1, AML72 with relatively high GABA productivity were selecled by thin layer chromatography (TLC). To elucidate the relationship between isolated strains and the genus Lactobacillus, their 16S rDNA sequence were examined. The result of their DNA sequences showed 99% similarity with Lactobacillus brevis ATCC 367. On the basis of the these results, isolated strains were identified as Lactobacillus brevis and designated L. brevis AML15. In order to determine the optimum conditions for GABA production, the isolated strains were cultivated in pyridoxal phosphate (PLP) and monosodium glutami. acid (MSG). Results showed that L. brevis AML15 had the highest CABA productivity with 10,424 $nM/{\mu}l$ concentration in MRS broth containing 5% (w/v) MSG and 10 ${\mu}M$ PLP at pH 5.0. The results imply that L. brevis AML15 has the potential to be developed as a strain for GABA hyper-production.

Optimal Conditions for the Production of Gamma-aminobutyric Acid by Enterococcus casseliflavus PL05 Isolated from Oenanthe javanica

  • Choi, Se Mi;Kim, Jeong A;Kim, Geun Su;Kwon, Do Young;Kim, Sang Gu;Lee, Sang yun;Lee, Kang Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • In this study, a new lactic acid bacterium (LAB) that could produce gamma-aminobutyric acid (GABA) was isolated from Oenanthe javanica (water celery) and identified as an Enteroccoccus casseliflavus strain. Until recently, there have been many studies on the gamma-aminobutyric acid producing lactic acid bacterium, as well as on some lactic acid bacterium in Enteroococcs genus, but none on the species E. casseliflavus. Therefore, in the purpose of finding the optimal conditions for GABA production of E. casseliflavus PL05, the effects of several conditions including the type of mediums, growth temperatures, initial pH, growth time, L-mono sodium glutamate (MSG) concentration, and carbon source were tested. The study revealed that the PL05 strain grew better in the Brain Heart Infusion (BHI) medium than in the Man, Rogosa, and Sharpe (MRS) or Tryptic Soy Broth (TSB) medium. Also, similar results were obtained with GABA production conditions. As a result of analysis on the GABA production yield by concentration of MSG, a GABA substrate, the highest production was found at 7% of MSG concentration. However, since similar level of production was found at 5%, it is considered to be more efficient to use 5% MSG concentration. The analysis on the growth and GABA production yield by carbon sources showed the highest results when maltose was used. From the final test under the optimal conditions found, 140.06±0.71 mM of GABA was produced over 24 hours with the conversion rate of 78.95%. Lastly, from the sensitivity analysis on the 10 different antibiotics, including vancomycin, it was found that there were not confirmed cases of resistance.

New Response Surface Approach to Optimize Medium Composition for Production of Bacteriocin by Lactobacillus acidophilus ATCC 4356

  • RHEEM, SUNGSUE;SEJONG OH;KYOUNG SIK HAN;JEE YOUNG IMM;SAEHUN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.449-456
    • /
    • 2002
  • The objective of this study was to optimize medium composition of initial pH, tryptone, glucose, yeast extract, and mineral mixture for production of bacteriocin by Lactobacillus acidophilus ATCC 4356, using response surface methodology. A response surface approach including new statistical and plotting methods was employed for design and analysis of the experiment. An interiorly augmented central composite design was used as an experimental design. A normal-distribution log-link generalized linear model based on a subset fourth-order polynomial ($R^2$=0.94, Mean Error Deviance=0.0065) was used as an analysis model. This model was statistically superior to the full second-order polynomial-based generalized linear model ($R^2$=0.80, Mean Error Deviance=0.0140). Nonlinear programming determined the optimum composition of the medium as initial pH 6.35, typtone $1.21\%$, glucose $0.9\%$, yeast extract $0.65\%$, and mineral mixture $1.17\%$. A validation experiment confirmed that the optimized medium was comparable to the MRS medium in bacteriocin production, having the advantage of economy and practicality.

Isolation and Identification of Lactobacillus plantarum CIB 001 with Bile Salt Deconjugation Activity from Kimchi (김치로부터 담즙산 분해능이 우수한 Lactobacillus plantarum CIB 001의 분리 및 동정)

  • Cha, Sang-Do;Kim, Tae-Woon;Lee, Dong-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.222-226
    • /
    • 2010
  • This study was carried out to isolate and characterize the Lactobacillus plantarum with bile salt deconjugation activity that was isolated from Kimchi. Some isolates were selected and identified as L. plantarum by 16S rRNA gene sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of whole cell protein patterns. They were assayed to determine their capacities to express bile salt hydrolase (BSH) activity. Among the identified strains, L. plantarum CIB 001 showed the highest level of BSH activity. Then, resistance to gastric acidity and bile condition were analyzed for further characterization. This strain was able to maintain viability for 1h at pH 2.0 and to survive in a MRS (deMan, Rogosa, and Sharpe) broth with 1.0% of bile acids. L. plantarum CIB 001 would potentially be useful in the food industry as probiotics.