• Title/Summary/Keyword: $^{40}Ar-^{39}Ar$ absolute ages

Search Result 3, Processing Time 0.019 seconds

The Study on Geology and Volcanism in Jeju Island (I): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute ages of the Subsurface Volcanic Rock Cores from Boreholes in the Eastern Lowland of Jeiu Island (제주도의 지질과 화산활동에 관한 연구 (I): 동부지역 저지대 시추코어 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom;Park, Yoon-Suk
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.93-113
    • /
    • 2008
  • This study presents petrochemistry and $^{40}Ar/^{39}Ar$ absolute ages of subsurface volcanic rock cores from twenty(20) boreholes in the eastern lowland (altitude loom below) of Jeju Island, Handeong-Jongdal-Udo-Susan-Samdal-Hacheon areas, and discusses topography and volcanism in the area. The subsurface volcanic rock cores are mainly basalts in composition with minor tholeiitic andesites and basaltic trachyandesites. Sequences of intercalated tholeiitic, transitional and alkalic lavas suggest that tholeiitic and transitional to alkalic lavas must have erupted contemporaneously. Especially, occurrences of trachybasalts and basaltic trachyandesites at the bases in the area imply that the volcanism in the area was initiated with slightly differentiated alkaline magma activity. The $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores range from $526{\pm}23ka\;to\;38{\pm}4Ka$. The lava-forming Hawaiian volcanic activities of the eastern lowland can be divided into five sequences on the basis of sediment distribution, whole rock geochemistry and $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores; stage I-U$(550{\sim}400Ka)$, stage II$(400{\sim}300Ka)$ and stage III$(300{\sim}200Ka)$ during syn-depositional stage of Seoguipo Formation, and stage IV$(200{\sim}100Ka)$ and stage V(younger than 100Ka) during post-depositional stage. In the eastern lowland of Jeju Island, compositional variations and local occurrences of the subsurface volcanic rocks as well as existences of various intercalated sediment layers (including hydrovolcanogenic clasts) suggest that the volcanism must have continued for long time intermittently and that the land has been progressively glowed from inland to coast by volcanic activities and sedimentation. It reveals that the subsurface volcanic rocks in the eastern lowland of Jeju Island must have erupted during relatively younger than 200Ka of stages IV and V. The results of this study are partly in contrast with those of previous studies. This study stresses the need that previous reported volcanic activities in Jeju Island based on K-Ar ages of volcanic rocks should be carefully reviewed, and that stratigraphic correlation from boreholes should be conducted by quantitative criteria combined with petrography and petrochemstry as well as radiometric studies of volcanic rock cores.

The Study on Geology and Volcanism in Jeju Island (II): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute Ages of the Volcanic Rocks in Gapado-Marado, Jeju Island (제주도의 지질과 화산활동에 관한 연구 (II): 가파도와 마라도 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.53-66
    • /
    • 2010
  • We report petrologic characteristics including $^{40}Ar-^{39}Ar$ absolute ages of the subsurface lavas recovered from borehole cores in two islets, Marado and Gapado, off the southwestern coast of Jeju in southernmost Korea and discuss on the volcanism in the region. The lavas in Gapado are apparently divided into one unit with bright colored, aphanitic texture and sheet jointed, and another unit with dark colored and massive. The outcrops often show differentially weathered pattern due to textural difference. While, the lavas in Marado have vesicular and glomerporphyric texture, even though each lava flow unit in Marado has slight unique texture with variation of vesicularity and phenocrysts. The chemical composition of rock core samples from Gapa borehole and Mara borehole shows that the lavas from Gapado and Marado are classified into basaltic trachyandesite($SiO_2$ 52.6-53.6 wt%, $Na_2O+K_2O$ 7.3-7.5 wt%) and tholeiitic andesite($SiO_2$ 51.7-52.8 wt%, $Na_2O+K_2O$ 3.6-4.1 wt%), respectively. The measured $^{40}Ar-^{39}Ar$ plateau ages range from $824{\pm}32\;Ka$(MSL -69 m) to $758{\pm}\;Ka$(MSL 19 m) for core samples of Gapa borehole and $259{\pm}168\;Ka$(MSL -26 m) for a core sample of Mara borehole, respectively. The absolute age of Gapado basaltic trachyandesite is well correlated with that of Sanbangsan trachyte(Won et al., 1986). Meanwhile, the age of a sample in Marado has $259{\pm}168\;Ka$(MSL -26 m) with poor plateau age formation and high error range. We report the data in caution but the rock composition and absolute age of Marado tholeiitic andesite are relatively correlated with those of lava units from Duksu and Sangmo-2 boreholes, indicating the volcanism during 260-150 Ka. On the basis of interpretation of occurrences of exposed and subsurface volcanic rocks of the study area, stratigraphic relationship with adjacent borehole cores and the bathymetry chart of surrounding area, it indicates that the lavas in Gapado were formed around 800 Ka during relatively early stage of volcanic activity in Jeju Island. Meanwhile, Marado may have originated around 260-150 Ka during relatively young stage of volcanism in Jeju Island. It is inferred that the volcanisms have originated in land and these islets were individual ancient volcanoes. The apparent topography has been re-shaped by tidal erosion due to transgression.

The Study on Geology and Volcanism in Jeju Island (III): Early Lava Effusion Records in Jeju Island on the Basis of $^{40}Ar/^{39}Ar$ Absolute Ages of Lava Samples (제주도의 지질과 화산활동에 관한 연구 (III): $^{40}Ar/^{39}Ar$ 절대연대자료에 근거한 제주도 형성 초기 용암 분출 기록)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.163-176
    • /
    • 2010
  • We report twenty data for early lavas erupted during the initial period of formation of Jeju Island on the basis of review on 539 data of whole-rock greochemistry and $^{40}Ar/^{39}Ar$ age dating out of mainly core samples from 69 boreholes drilled in the lower land since 2001 and 66 outcrop sites. Out of 69 boreholes, the early lava flow units are identified from samples collected from Beophocheon (EL 235 m, 210 m deep), Donnaeko (EL 240 m, 230 deep), Donghong-S (EL 187 m, 340 m deep), 05Donghong (EL. 187.6 m, 340 m deep), Dosoon (EL 305 m, 287 m deep), Sangye (EL 230 m, 260 m deep), Mureung-1 (EL 10.2 m, 160 m deep), and Gapa (EL 17.5 m, 92 m deep), which are located in the southern and southwestern portion of Jeju Island. While, the well-known outcrops from Sanbangsan, Wolrabong, Wonmansa, and Kagsubawi are also reconfirmed. $^{40}Ar/^{39}Ar$ age dating results of these lavas range from 1 Ma to 0.7 Ma, indicating that the data can be useful to constrain on age and geochemical characteristics of early lava effusion period in the formation of Jeju Island. Especially, samples with trachybasalt in composition collected from 143 m to 137 m, and from 135 m to 123 m below ground surface at 05Donghong hole have the oldest ages, $992\pm21$ Ka and $988\pm38$ Ka, respectively. This study suggests that in Jeju Island the first lava with trachybasalt in composition may have effused around 1 Ma ago, and the effusion style and chemical compositions of lavas must have changed to the formation of lava domes with trachyte-trachyandesite-basaltic trachyandesite and the eruption of lavas with alkali basalt and trachybasalt intermittently during the period from 0.9 Ma to 0.7 Ma ago. It also indicates that the initial lava flows below the ground are intercalated with or underlain by the Seoguipo Formation except for several exposed domal structure areas such as Sanbangsan and Kagsubawi, implying that the early lava effusion may have intermittently and sporadically occurred with nearby hydrovolcanism and sedimentation.