• Title/Summary/Keyword: $^{40}Ar/^{39}Ar$ 절대연대

Search Result 9, Processing Time 0.024 seconds

The Study on Geology and Volcanism in Jeju Island (I): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute ages of the Subsurface Volcanic Rock Cores from Boreholes in the Eastern Lowland of Jeiu Island (제주도의 지질과 화산활동에 관한 연구 (I): 동부지역 저지대 시추코어 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom;Park, Yoon-Suk
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.93-113
    • /
    • 2008
  • This study presents petrochemistry and $^{40}Ar/^{39}Ar$ absolute ages of subsurface volcanic rock cores from twenty(20) boreholes in the eastern lowland (altitude loom below) of Jeju Island, Handeong-Jongdal-Udo-Susan-Samdal-Hacheon areas, and discusses topography and volcanism in the area. The subsurface volcanic rock cores are mainly basalts in composition with minor tholeiitic andesites and basaltic trachyandesites. Sequences of intercalated tholeiitic, transitional and alkalic lavas suggest that tholeiitic and transitional to alkalic lavas must have erupted contemporaneously. Especially, occurrences of trachybasalts and basaltic trachyandesites at the bases in the area imply that the volcanism in the area was initiated with slightly differentiated alkaline magma activity. The $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores range from $526{\pm}23ka\;to\;38{\pm}4Ka$. The lava-forming Hawaiian volcanic activities of the eastern lowland can be divided into five sequences on the basis of sediment distribution, whole rock geochemistry and $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores; stage I-U$(550{\sim}400Ka)$, stage II$(400{\sim}300Ka)$ and stage III$(300{\sim}200Ka)$ during syn-depositional stage of Seoguipo Formation, and stage IV$(200{\sim}100Ka)$ and stage V(younger than 100Ka) during post-depositional stage. In the eastern lowland of Jeju Island, compositional variations and local occurrences of the subsurface volcanic rocks as well as existences of various intercalated sediment layers (including hydrovolcanogenic clasts) suggest that the volcanism must have continued for long time intermittently and that the land has been progressively glowed from inland to coast by volcanic activities and sedimentation. It reveals that the subsurface volcanic rocks in the eastern lowland of Jeju Island must have erupted during relatively younger than 200Ka of stages IV and V. The results of this study are partly in contrast with those of previous studies. This study stresses the need that previous reported volcanic activities in Jeju Island based on K-Ar ages of volcanic rocks should be carefully reviewed, and that stratigraphic correlation from boreholes should be conducted by quantitative criteria combined with petrography and petrochemstry as well as radiometric studies of volcanic rock cores.

The Study on Geology and Volcanism in Jeju Island (II): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute Ages of the Volcanic Rocks in Gapado-Marado, Jeju Island (제주도의 지질과 화산활동에 관한 연구 (II): 가파도와 마라도 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.53-66
    • /
    • 2010
  • We report petrologic characteristics including $^{40}Ar-^{39}Ar$ absolute ages of the subsurface lavas recovered from borehole cores in two islets, Marado and Gapado, off the southwestern coast of Jeju in southernmost Korea and discuss on the volcanism in the region. The lavas in Gapado are apparently divided into one unit with bright colored, aphanitic texture and sheet jointed, and another unit with dark colored and massive. The outcrops often show differentially weathered pattern due to textural difference. While, the lavas in Marado have vesicular and glomerporphyric texture, even though each lava flow unit in Marado has slight unique texture with variation of vesicularity and phenocrysts. The chemical composition of rock core samples from Gapa borehole and Mara borehole shows that the lavas from Gapado and Marado are classified into basaltic trachyandesite($SiO_2$ 52.6-53.6 wt%, $Na_2O+K_2O$ 7.3-7.5 wt%) and tholeiitic andesite($SiO_2$ 51.7-52.8 wt%, $Na_2O+K_2O$ 3.6-4.1 wt%), respectively. The measured $^{40}Ar-^{39}Ar$ plateau ages range from $824{\pm}32\;Ka$(MSL -69 m) to $758{\pm}\;Ka$(MSL 19 m) for core samples of Gapa borehole and $259{\pm}168\;Ka$(MSL -26 m) for a core sample of Mara borehole, respectively. The absolute age of Gapado basaltic trachyandesite is well correlated with that of Sanbangsan trachyte(Won et al., 1986). Meanwhile, the age of a sample in Marado has $259{\pm}168\;Ka$(MSL -26 m) with poor plateau age formation and high error range. We report the data in caution but the rock composition and absolute age of Marado tholeiitic andesite are relatively correlated with those of lava units from Duksu and Sangmo-2 boreholes, indicating the volcanism during 260-150 Ka. On the basis of interpretation of occurrences of exposed and subsurface volcanic rocks of the study area, stratigraphic relationship with adjacent borehole cores and the bathymetry chart of surrounding area, it indicates that the lavas in Gapado were formed around 800 Ka during relatively early stage of volcanic activity in Jeju Island. Meanwhile, Marado may have originated around 260-150 Ka during relatively young stage of volcanism in Jeju Island. It is inferred that the volcanisms have originated in land and these islets were individual ancient volcanoes. The apparent topography has been re-shaped by tidal erosion due to transgression.

$^{40}Ar^{/39}Ar$ Age of the Volcanic Pebbles Within the Silla Conglomerate and the Deposition Timing of the Hayang Group (백악기 신라역암 내 화산암력의 $^{40}Ar^{/39}Ar$ 연대 및 하양층군의 퇴적시기에 대한 고찰)

  • Kim Chan-Soo;Park Kye-Hun;Paik In-Sung
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • Hornblende $^{40}Ar/^{39}Ar$ age of $113.4{\pm}2.4(2{\sigma})$ Ma was determined from the volcanic pebble of the Silla Conglomerate which belongs to the Hayang Group of the Cretaceous Gyeongsang Supergroup. This age corresponds to the top of Aptian. Based on the reported age information, onset and duration of deposition of the constituting formations of the Hayang Group are constrained as follows; deposition of the Jindong Formation started from ca. 96~97 Ma and lasted for about 15 Ma. Therefore, Jindong Formation was deposited since Cenomanian to Santonian and it is likely to be extended to the early Campanian. We propose 81~80 Ma, which is in early Campanian, as the boundary between Hayang and Yucheon Groups. We suggest that the Silla Conglomerate was deposited during the early Albian and the Haman Formation was deposited during the rest of the Albian and also during the Cenomanian. The Chilgok Formation seems to be deposited during the late Aptian.

The Study on Geology and Volcanism in Jeju Island (III): Early Lava Effusion Records in Jeju Island on the Basis of $^{40}Ar/^{39}Ar$ Absolute Ages of Lava Samples (제주도의 지질과 화산활동에 관한 연구 (III): $^{40}Ar/^{39}Ar$ 절대연대자료에 근거한 제주도 형성 초기 용암 분출 기록)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.163-176
    • /
    • 2010
  • We report twenty data for early lavas erupted during the initial period of formation of Jeju Island on the basis of review on 539 data of whole-rock greochemistry and $^{40}Ar/^{39}Ar$ age dating out of mainly core samples from 69 boreholes drilled in the lower land since 2001 and 66 outcrop sites. Out of 69 boreholes, the early lava flow units are identified from samples collected from Beophocheon (EL 235 m, 210 m deep), Donnaeko (EL 240 m, 230 deep), Donghong-S (EL 187 m, 340 m deep), 05Donghong (EL. 187.6 m, 340 m deep), Dosoon (EL 305 m, 287 m deep), Sangye (EL 230 m, 260 m deep), Mureung-1 (EL 10.2 m, 160 m deep), and Gapa (EL 17.5 m, 92 m deep), which are located in the southern and southwestern portion of Jeju Island. While, the well-known outcrops from Sanbangsan, Wolrabong, Wonmansa, and Kagsubawi are also reconfirmed. $^{40}Ar/^{39}Ar$ age dating results of these lavas range from 1 Ma to 0.7 Ma, indicating that the data can be useful to constrain on age and geochemical characteristics of early lava effusion period in the formation of Jeju Island. Especially, samples with trachybasalt in composition collected from 143 m to 137 m, and from 135 m to 123 m below ground surface at 05Donghong hole have the oldest ages, $992\pm21$ Ka and $988\pm38$ Ka, respectively. This study suggests that in Jeju Island the first lava with trachybasalt in composition may have effused around 1 Ma ago, and the effusion style and chemical compositions of lavas must have changed to the formation of lava domes with trachyte-trachyandesite-basaltic trachyandesite and the eruption of lavas with alkali basalt and trachybasalt intermittently during the period from 0.9 Ma to 0.7 Ma ago. It also indicates that the initial lava flows below the ground are intercalated with or underlain by the Seoguipo Formation except for several exposed domal structure areas such as Sanbangsan and Kagsubawi, implying that the early lava effusion may have intermittently and sporadically occurred with nearby hydrovolcanism and sedimentation.

A Study on Sedimentology of the Mesozoic Munamdong Formation, Northeastern Gyeonggi Massif, Korea (경기육괴 북동부에 분포하는 중생대 문암동층의 퇴적학적 연구)

  • Choi, Young-Gi;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.517-532
    • /
    • 2014
  • The Munamdong Formation is a small scale sedimentary deposit which is located in Yuljeonri, Naemyeon, Hongcheon Gangwon-do. In order to understand the depositional environment and its sequential change in the formation, sedimentary facies analysis was conducted. The result indicates that the Munamdong Formation began to be deposited in alluvial fan system accompanying volcanic activity and gradually deposited in lake system. As well, U-Pb, K-Ar and $^{40}Ar/^{39}Ar$ ages are determined from the Munamdong Formation. The SHRIMP U-Pb Phanerozoic Eon age of the detrital zircons in the middle part of the Munamdong formation yields $229.8{\pm}2.5Ma$. The K-Ar and $^{40}Ar/^{39}Ar$ ages of the volcanic rock in the lowermost part of the Munamdong formation are $203.7{\pm}3.9Ma$ and $227.4{\pm}8.4Ma$ respectively. These results confirm that the Munamdong Formation was deposited during the Late Triassic, indicating that the basin might be formed due to post-collisional rifting or collapsing.

Volcanic Activity of the Volcanoes in the Hallasan Natural Reserve, Jeju Island, Korea (한라산천연보호구역 소화산들의 화산활동 기록)

  • Hong, Sei Sun;Lee, Choon Oh;Lim, Jaesoo;Lee, Jin Young;Ahn, Ung San
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • This study reports the Ar-Ar dating results for the volcanic rocks from small volcanoes(oreum) of the Hallasan Nature Reserve. According to the age of 40Ar/39Ar, the volcanic activity of the Hallasan Natural Reserve was started from about 192 ka ago. The basaltic trachyandesite and trachyte located in the Y valley near the Eorimok in the western part of the Hallasan Natural Reserve represent an age of about 191~192 ka, showing the oldest record of volcanic activity in the Hallasan Natural Reserve. In the Hallasan Natural Reserve, the small volcanoes older than 100 ka are Y Valley in Eorimok area (192±5 and 191±5 ka), Dongsu-Ak (184±19 ka), Mansedongsan (153±5 ka), Janggumok-Orum (135±6 ka), Eoseungsaengak (123±9 ka), Samgagbong (105±2 ka). And the small volcanoes younger than 100 ka are Witbangae-Oreum, Seongneol-Oreum, Muljangol, Yeongsil, Bori-Ak, Witsenueun-Oreum, Witsejokeun-Oreum, Heugbuleun-Oreum, Bangae-Oreum, Albangae-Oreum, Witsebuleun-Oreum, Baengnokdam, Nongo-Ak. According to the eruption of trachytes, the Hallasan Natural Reserve can be interpreted as having about 8 volcanic activities. Among them, 4 volcanic activities are related with the formation of trachyte dome, such as Wanggwanneung, Samgakbong, Yeongsil, and Baengnokdam, and 4 volcanic activities are related with flow or dyke of trachyte. The volcanic activity at the Hallasan Natural Reserve was started from northwest area, to in the southern area, and in the eastern area, and finally volcanic activity related to the formation of Baengnokdam.

Age Constraints on Human Footmarks in Hamori Formation, Jeiu Island, Korea (제주도 하모리층에 발달하는 사람 발자국의 형성시기)

  • Cho Deung-Lyong;Park Ki-Hwa;Jin Jae-Hwa;Hong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.149-156
    • /
    • 2005
  • Ar-Ar, carbon AMS and OSL dating was carried out to clarify the age of the human footmarks on the Hamori Formation, Jeju Island, Korea. $^{40}Ar/^{39}Ar$ ages of trachybasalt from the Songaksan Tuff, which is underlain by the Hamori Formation, range between $10.6{\pm}19.9\;Ka$ and $11.7{\pm}26.3\;Ka$. Radiocarbon AMS ages of humin fractions extracted from sediment samples yielded the maximum limit age of the Hamori Formation as $15,161{\pm}70\;yr$ B.P. The OSL dating of the top and bottom layers of the Hamori Formation gave $6.8{\pm}0.3\;ka$ and $7.6{\pm}0.5\;ka$, respectively, suggesting that timing of the human footmarks formation can be constrained as between ca 6,800 yr B.P. and 7,600 yr B.P.

Study on Resource Plants of the Mt. Geonji, Jeonju City (전주시 건지산 일대의 자원식물상 연구)

  • Oh, Hyun-Kyung;Beon, Mu-Sup;Lim, Seong-Gu;Park, Joon-Moh;Kim, Kae-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.73-82
    • /
    • 2008
  • The resource plants of the Mt. Geonji was listed 354 taxa; 92 families, 242 genera, 303 species, 48 varieties and 3 forms. 354 taxa listed consists of 205 taxa of edible plants(57.1%),234 taxa of medicinal plants(65.2%), 167 taxa of ornamental plants(46.5%) and 218 taxa of the others(60.7%). Specific plant species by floral region were total 22 taxa; Trapella sinensis var. antennifera in class IV, Iris ensata var. spontanea in Class II, 16 taxa(Salix glandulosa, Alnus hirsuta, Chrysosplenium flagelliferum, Mallotus japonicus, Ilex macropoda, Grewia biloba var. parviflora, Vaccinium oldhami, Lysimachia barystachys, Fraxinus mandshurica, etc.) in class I. The naturalized plants in this site were 12 families, 23 genera, 28 species, 2 varieties, 30 taxa(Bromus unioloides, Phytolacca americana, Oenothera erythrosepala, Ipomoea hederacea var. hederacea, Aster pilosus, Erechtites hieracifolia) and naturalization rate was 8.5% of all 354 taxa vascular plants. Wild plants disturbing ecosystem like Solanum carolinense and Ambrosia artemisiifolia var. elatior have been increasing. So, it needs continuing control and conservation measures on the plant ecosystem.

Clonal Variation in Female Flowering of Larix leptolepis (낙엽송 클론의 암꽃 개화량 변이)

  • Kim, In-Sik;Kim, Jong-Han;Kang, Jin-Taek;Lee, Byung-Sil
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The clonal variation in female flowering was studied in Larix leptolepis clone bank, consisting of 116 clones, for three years. The between-year variation was large; i.e. the percentage of flowering grafts and average number of flowering per graft were $28.4{\sim}67.2$ and $9{\sim}176$, respectively. Differences in flowering abundance among clones were large and statistically significant in all the years studied. The variance of flowering abundance among clones was increased when flowering was poor. The average of broad-sense heritability of flowering abundance was 0.52. The genetic gain(%G) was estimated at 57.4% when the upper 30% clones were selected. The clonal stability of flowering abundance was compared using average number of flowering and coefficient of variance value of each clone. The clones such as Gyeonggi 9(29), Kangwon 37(137), Chungnam 6(46), Chungnam 14(414), R11, R8 showed abundant flowering and high stability.