• Title/Summary/Keyword: $^{32}P$-postlabeling assay

Search Result 5, Processing Time 0.021 seconds

Optimization of the 32P-postlabeling Assay for Detecting Benzo(a)pyrene-induced DNA Adduct Formation in Zacco platypus

  • Lee, Jin Wuk;Lee, Sung Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • Objectives: $^{32}P$-postlabeling assay is the most sensitive method of detecting DNA adduct formation. However, it is limited by a low sample throughput and use of radioisotopes (RI). In this study, we modified it to minimize these limitations and applied it to Z. platypus exposed to Benzo(a)pyrene (BaP) in order to investigate DNA adduct formation (effect biomarker for pollutants) in Z. platypus for assessing risk of waterborne BaP exposure. Methods: DNA hydrolysis was performed only with Micrococcal nuclease (MNase), RI reduction test was performed and the overlapping steps between thin layer chromatography (TLC) and radioisotope high-performance liquid chromatography (RI-HPLC) were omitted. The application of a modified method to Z. platypus exposed to BaP was performed. Results: The results revealed that the amount of RIs used can be reduced roughly 10-fold. Because the analysis time was shortened by 8.5 hours, the sample throughput per hour was increased compared with the previous method. The results of applying modified $^{32}P$-postlabeling assay to Z. platypus, DNA adduct formation in Z. platypus showed dose-dependency with the BaP concentration. Only BPDE-dGMP was detected as a DNA adduct. Conclusion: These results demonstrate that the modified $^{32}P$-postlabeling assay is a suitable method for detecting DNA adduct formation in Z. platypus exposed to waterborne BaP and will be useful in risk assessment of carcinogenic effect in aquatic environment due to BaP.

32P-postlabeling Analysis of 7H-Dibenzo [c,g] carbazole and Dibenz [a,j] acridine DNA Adduct in Mice (7H-Dibenzo [c,g] carbazole과 Dibenz[a,j] acridine에 의한 DNA adduct의 32P-postlabeling 분석)

  • Roh, JH;Moon, YH;Warshawsk, D.;Talaska, G.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.14-21
    • /
    • 1993
  • N-Heterocyclic aromatics (NHA) are widely occurring environmental pollutants formed during the pyrolysis of nitrogen-containing organic chemicals. NAH are found in significant amounts in tobacco condensates, synthetic fuels, polluted river sediment, and effluents from the heating of coal. Following topical application 7H-dibenzo[c, g]carbazole (DBC) induces cancer in liver as well as skin, indicating that dermal exposure can lead to systemic effect. DBC and dibenz[a,j]acridine (DBA) are examples of NHA. The potency of many carcinogenic compounds is related, at least in part, to the efficiency of their biological activation. We undertook studies to determine which initial metabolites lead to the formation of high levels of carcinogen-DNA adducts in vivo. DBC and DBA's, DBA, trans-DBA-1,2-dihydrodiol (DBA-1,2-DHD), trans-DBA-3,4-dihydrodiol (DBA-3,4-DHD), and trans-DBA-5,6-dihydrodiol (DBA-5,6-DHD), were applied to the skin of mice. There were six adducts that were related to DBC application. These addusts were seen in the target organ, liver at high levels, but at very low levels in non-target organs, skin, lung and kidney. In skin, DBA produced two distinct adducts. The same two adducts were seen when DBA-3,4-DHD was applied. In addition the total adduct level elicited by DBA-3,4-DHD higher than that of parent compound. Two adducts were seen when DBA-5,6-DHD was applied, but these were very different from adducts seen with DBA. These results suggested that activation of DBA to DNA-binding compounds in skin includes initial formation of DBA-3,4-DHD.

  • PDF

BIOLOGICAL HUMAN MONITORING OF CARCINOGEN EXPOSURE: A NEW STRATEGY IN CANCER PREVENTION

  • Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • Human exposure to environmental carcinogens can be detected by a number of methods including immunoassay, $^{32}P-postlabeling$ assay, and fluorescence technique. These assays have been applied to measure biological markers of carcinogen-adducts formed with macromolecules such as DNA, RNA and protein. In an attempt to investigate causal relationships between carcinogen exposure and tumor formation, specific carcinogen-adducts have been quantitated from human tissues and body fluids of cancer patients, occupational workers heavily exposed to certain carcinogens, smokers and controls. Carcinogens studied for biological human monitoring include benzo(a)pyrene, aflatoxin B1, UV light, ethylene oxide, 8-methoxypsoralen, 4-aminobiphenyl, vinyl choride, N-nitrosamine, cisplatin and other chemotherapeutic agents. Relevance of human monitoring for cancer research, progress in this field, methods to detect carcinogen-adducts are reviewed here. It is hoped that these approaches will be used for the risk assessment of carcinogen exposure, cancer etiology study and cancer prevention in humans.

  • PDF

BIOLOGICAL HUMAN MONITORING OF CARCINOGEN EXPOSURE: A NEW STRATEGY IN CANCER PREVENTION

  • Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.61-61
    • /
    • 1990
  • Human exposure to environmental carcinogens can be detected by a number of methods including immunoassay, $^{32}P$-postlabeling assay, and fluorescence technique. These assays have been applied to measure biological markers of carcinogen-adducts formed with macromolecules such as DNA, RNA and protein. In an attempt to investigate causal relation ships between carcinogen exposure and tumor formation, specific carcinogen-adducts have been quantitated from human tissues and body fluids of cancer patients, occupational workers heavily exposed to certain carcinogens, smokers and controls. Carcinogens studied for biological human monitoring include benzo(a)pyrene, aflatoxin B1, UV light, ethylene oxide, 8-methoxypsoralen, 4-aminobiphenyl, vinyl chloride, N-nitrosamine, cisplatin and other chemotherapeutic agents. Relevance of human monitoring for cancer research, progress in this field, methods to detect carcinogen-adducts are reviewed here. It is hoped that these approaches will be used for the risk assessment of carcinogen exposure, cancer etiology study and cancer prevention in humans.

Carcinogenicity and mutagenicity of heterocyclic amines in transgenic models

  • Ryu D.Y.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2000.11a
    • /
    • pp.45-67
    • /
    • 2000
  • 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a mutagenic and carcinogenic heterocyclic amino found in cooked meat. The in vivo mutagenicity and hepatocarcinogenicity of MeIQx were examined in mice harboring the lacZ mutation reporter gene ($Muta^{TM}$ Mice) and bitransgenic mice over-expressing the c-myc oncogene. C57B1/$\lambda$lacZ and bitransgenic c-myc (albumin promoter)/$\lambda$lacZ mice were bred and weaned onto an AIN-76 based diet containing $0.06\%$ (w/w) MeIQx or onto control diet. After 30 weeks on diet, only male bitransgenic mice on MeIQx developed hepatocellular carcinoma ($100\%$ incidence) indicating that there was synergism between c-myc over-expression and MeIQx. By 40 weeks, hepatic tumor incidence was $100\%$ ($17\%$) and $44\%$ ($0\%$) in male c-myc/$\lambda$lacZ and C57B1/$\lambda$lacZ mice given MeIQx (or control) diet, respectively, indicating that either MeIQx or c-myc over-expression alone eventually induced hepatic tumors. At either time point, mutant frequency in the lacZ gene was at least 40-fold higher in MeIQx-treated mice than in control mice of either strain. These findings suggest that MeIQx-induced hepatocarcinogenesis is associated with MeIQx-induced mutations. Elevated mutant frequency in MeIQx-treated mice also occurred concomitant with the formation of MeIQx-guanine adducts as detected by the $^{32}P$-postlabeling assay. Irrespective of strain or diet, sequence analysis of the lacZ mutants from male mouse liver showed that the principal sequence alteration was a single guanine-base substitution. Adenine mutations, however, were detected only in animals on control diet. MeIQx-fed mice harboring the c-myc oncogene showed a l.4-2.6-fold higher mutant frequency in the lacZ gene than mice not carrying the transgene. Although there was a trend toward higher adduct levels in c-myc mice, MeIQx-DNA adduct levels were not significantly different between c-myc/$\lambda$lacZ and C57B1/$\lambda$lacZ mice after 30 weeks on diet. Thus, it appeared that factors in addition to MeIQx-DNA adduct levels, such as the enhance rate of proliferation associated with c-myc over-expression, may have accounted for a higher mutant frequency in c-myc mice. In the control diet groups, the lacZ mutant frequency was significantly higher in c-myc/$\lambda$lacZ mice than in 057B1/$\lambda$1acZ mice. The findings are consistent with the notion that c-myc over-expression is associated with an increase in mutagenesis. The mechanism for the synergistic effects of c-myc over-expression on MeIQx hepatocarcinogenicity appears to involve an enhancement of MeIQx-induced mutations.

  • PDF