• Title/Summary/Keyword: $^{238}Pu$

Search Result 35, Processing Time 0.022 seconds

Preparation and Flame Retardancy Effect of Polyurethane Coatings Containing Phosphorus and Chlorine (인과 염소를 함유하는 폴리우레탄 도료의 제조와 난연효과)

  • Shim Il-Woo;Jo Hye-Jin;Park Hong-Soo;Kim Seong-Kil;Kim Young-Geun
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.238-246
    • /
    • 2006
  • The aim of this study is to enhance the flame retardancy by the synergism effect of chlorine and phosphorus groups. The flame-retardant polyurethane coatings containing chlorine and phosphorus compounds were synthesized. After synthesizing the intermediate products of tetramethylene bis (orthophosphate) (TMBO) and neohexanediol trichlorobenzoate (TBA-adduct), the condensation polymerization was performed with four different monomers of two intermediates, 1,4-butanediol, and adipic acid to obtain four-component copolymer(TTBA). The two-component flame-retardant polyurethane coatings (TTBA-10C/HDI-trimer=TTHD-10C, TTBA-20C/HDI-trimer=TTHD-20C, TTBA-30C/HDI trimer=TTHD-30C) were obtained by curing reaction at room temperature with the synthesized TTBAs and hexamethylene diisocyanate (HDI)-trimer as a curing agent. The obtained TTHDs were made into coating samples and used as test samples for various physical properties. The physical properties of the flame-retardant coatings containing chlorine and phosphorus groups were generally inferior to those containing only phosphorus group. Flame retardancy was tested by vortical and horizontal combustion method, and $45^{\circ}$ Meckel burner method. Since the retardancy of flame-retardant coatings containing chlorine and phosphorus groups was better than that containing only phosphorus group, it could be concluded that the retardancy by the synergism effect of chlorine and phosphorus groups exhibited.

OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I)

  • Bratton, Ryan N.;Avramova, M.;Ivanov, K.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.313-342
    • /
    • 2014
  • A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for Uncertainty Analysis in Modeling (UAM) is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR) design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the "Neutronics Phase", which is devoted mostly to the propagation of nuclear data (cross-section) uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available) are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: $^{238}U$ radiative capture and inelastic scattering (n, n') as well as the average number of neutrons released per fission event of $^{239}Pu$).

Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) Part 1: Neutronic analysis

  • Galahom, A. Abdelghafar;Mohsen, Mohamed Y.M.;Amrani, Naima
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study discusses the effect of using 232Th instead of 238U on the neutronic characteristics and the main operating parameters of the pressurized water reactor (PWR). MCNPX version 2.7 was used to compare the neutronic characteristics of UO2 with (Th, 235U)O2 and (Th, 233U) O2. Firstly, the infinity multiplication factor (Kinf), thermal neutron flux, and power distribution have been studied for the investigated fuel types. Secondly, the effect of Gd2O3 and Er2O3 on the Kinf and on the radial thermal neutron flux and thermal power has been investigated to distinguish which of them is more suitable than the other in reactivity management. Thirdly, to illustrate the effectiveness of 232Th in decreasing the inventory of both the actinides and non-actinides, the concentration of plutonium (Pu) isotopes and minor actinides (MAs) has been simulated with the fuel burnup. Besides, due to their large thermal neutron absorption cross-section, the concentrations of 135Xe, 149Sm, and 151Sm with the fuel burnup have been investigated. Finally, the main safety parameters such as the reactivity worth of the control rods (ρCR), the effective delayed neutron fraction βeff, and the Doppler reactivity coefficient (DRC) were calculated to determine to which extent these fuel types achieve the acceptable limits.

An optimization design study of producing transuranic nuclides in high flux reactor

  • Wei Xu;Jian Li;Jing Zhao;Ding She;Zhihong Liu;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2723-2733
    • /
    • 2023
  • Transuranic nuclides (such as 238Pu, 252Cf, 249Bk, etc.) have a wide range of application in industry, medicine, agriculture, and other fields. However, due to the complex conversion chain and remarkable fission losses in the process of transuranic nuclides production, the generation amounts are extremely low. High flux reactor with high neutron flux and flexible irradiation channels, is regarded as the promising candidate for producing transuranic nuclides. It is of great significance to increase the conversion ratio of transuranic nuclides, resulting in higher efficiency and better economy. In this paper, we perform an optimization design evaluation of producing transuranic nuclides in high flux reactor, which includes optimization design of irradiation target and influence study of reactor core loading. It is demonstrated that the production rate increases with appropriately determined target material and target structure. The target loading scheme in the irradiation channel also has a significant influence on the production of transuranic nuclides.

Chinese Patients with Gastric Cancer Need Targeted Adjuvant Chemotherapy Schemes

  • Shi, Wen-Tao;Wei, Lei;Xiang, Jin;Su, Ke;Ding, Qiong;Tang, Meng-Jie;Li, Ji-Qiang;Guo, Yi;Wang, Pu;Zhang, Jing-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5263-5272
    • /
    • 2012
  • Background: Gastric cancer (GC) is one of the most common cancers in China. Adjuvant chemotherapy (AC) is a routine auxiliary treatment for GC recommended by the guidelines issued in 2011 by the Ministry of Health of the People's Republic of China, but the relevant credible consequences in China have been insufficient because of China's late start and ethical concerns. Methods: A series of databases, including Cochrane Library, MEDLINE, EMBASE, the Chinese database of the National Knowledge Infrastructure and the VIP database, were searched by 2 reviewers independently for studies investigating AC for GC through March 2012. The retrieved literature was screened according to the eligibility criteria. Results: A total of 35 randomized control trials (RCTs) were subjected to the final analysis, including 4,043 patients in treatment group and 3,884 in the control group, as well as 4 clinical-control trials (CCTs), which accessed the final analysis with 238 and 252 patients, respectively. AC reduced the risk of death as a protective treatment with statistical significance (HR=0.91, 95%CI: [0.85, 0.97], P=0.002), and it seemed more effective for Asian than non-Asian patients. The effects of AC were not influenced by the starting time (P>0.05). D2 lymphadenectomy-based chemotherapy was effective (HR=0.89, 95%CI: [0.80, 0.99], P=0.04). Oral S-1 40 mg/m2 after D2 lymphadenectomy might be a better choice for Asians with advanced GC and might result in a greater reduction of adverse events than in non-Asian patients. GRADE quality assessment determined that the strength of the evidence from foreign studies from Europe, the United States and Asian countries other than China was high, while it was moderate for Chinese studies. Conclusion: AC was effective or even curative in Chinese patients in general, although it is still necessary to optimize a targeted AC scheme for Chinese patients with GC.