• Title/Summary/Keyword: $^{18}F$-Fluoride PET/CT

Search Result 4, Processing Time 0.017 seconds

Usefulness of $^{18}F$-Fluoride PET/CT in Bone Metastasis of Prostate Cancer (전립선암 환자의 뼈 전이에 대한 $^{18}F$-Fluoride PET/CT의 유용성)

  • Park, Min-Soo;Kim, Jung-Yul;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.24-30
    • /
    • 2009
  • Purpose: Today, Prostate cancer has been gradually increasing, according to the change of internal incidence rate of cancer. Generally, prostate cancer has lead to dead over 90%, in case of metastasis of lymph node and bone. So, innovative development of new radiopharmaceutical and imaging modality is progressed for detection of that metastasis, in nuclear medicine, now. Therefore, this study shows the usefulness of $^{18}F$-Fluoride PET/CT improved diagnosability on bone metastasis of prostate cancer. Materials and Methods: In this study, 33 male patients with prostate cancer were examined (The mean age: $67.8{\pm}10.2$ years old). Every patient was done each whole body bone scan (WBBS) and $^{18}F$-Fluoride positron emission tomography/computed tomography ($^{18}F$-Fluoride PET/CT). And then, using Receiver Operating Characteristic Curve (ROC curve), each sensitivity and specificity of two modalities was measured and compared with. Results: In 22 patients (66.6%) of all, bone metastasis was detected. And, in WBBS, sensitivity was 63.6%, specificity, 81.8%; in $^{18}F$-Fluoride PET/CT, sensitivity was 100% and specificity was 90.9%. As a result of ROC curve, AUROC (The Area under an ROC) of WBBS was 0.778, and that of $^{18}F$-Fluoride PET/CT, 0.942. Conclusions: $^{18}F$-Fluoride PET/CT was higher both sensitivity and specificity than WBBS, and it was valuable to detect bone metastasis of prostate cancer more definitely, with 3D imaging realization. Also, in $^{18}F$-Fluoride PET/CT, physiological images were acquired in more short time than WBBS, so, it was possible to reduce patient's waiting time and complaint. Therefore, it is considered that $^{18}F$-Fluoride PET/CT is able to improve diagnosability by offering more accurate images, as cuts in a share of high cost.

  • PDF

$^{18}$F-Fluoride-PET in Skeletal Imaging ($^{18}$F-Fluoride-PET을 이용한 골격계 영상)

  • Jeon, Tae-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.253-258
    • /
    • 2009
  • Bone scintigraphy using $^{99m}$Tc-labeled phosphate agents has long been the standard evaluation method for whole skeletal system. However, recent shortage of $^{99m}$Tc supply and advanced positron emission tomography (PET) technology evoked the attention to surrogate radiopharmaceuticals and imaging modalities for bone. Actually, fluorine-18 ($^{18}$F) was the first bone seeking radiotracer before the introduction of $^{99m}$Tc-labeled agents even though its clinical application failed to become pervasive anymore after the rapid spread of Anger type gamma camera systems in early 1970s. However, rapidly developed PET technology made us refocus on the usefulness of $^{18}$F as a PET tracer. Early study comparing $^{18}$F-Na PET scan and planar bone scintigraphy reported that PET has higher sensitivity and specificity in the diagnosis of metastatic bone lesions than planar bone scan. Subsequent reports comparing between PET and both planar and SPECT bone image also revealed better results of PET scan in similar study groups. Rapid clinical application of PET/CT also accumulated considerable amount of experiences in skeletal evaluation and this modality is known to have better diagnostic power than stand alone PET system as well as bone scan. Furthermore $^{18}$F-Na PET/CT revealed better or at least equal results in detection of primary and metastatic bone lesions compared with CT and MRI. Therefore, it is obvious that $^{18}$F-Na PET/CT has potential to become new imaging modality for practical skeletal evaluation so continuous and careful evaluation of this modality and radiopharmaceutical must be required.

The Quantitative Evaluation of Cardiac Calcification Using 18F-Sodium fluoride PET/CT (18F-Sodium fluoride PET 이용한 심장 석회화 정량평가에 대한 고찰)

  • Choi, Yong Hoon;Lee, Seung Jae;Kang, Chun Goo;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.38-42
    • /
    • 2019
  • Purpose Although computed tomography (CT) is used for coronary artery calcification, it is difficult to differentiate between high risk microcalcifications. Studies have shown that $^{18}F$-sodium fluoride ($^{18}F-NaF$) is very useful for the diagnosis of microcalcifications. In this study, we aimed to evaluate the usefulness of $^{18}F-NaF$ PET imaging in quantitative evaluation of calcification. Materials and Methods A total of 45 patients ($67.1{\pm}6.9years\;old$) were injected with 250 MBq of $^{18}F-NaF$ for 1 hour and images were acquired for 30 minutes. All patients underwent CT angiography (CTAngiography, CTA) before the PET scan. The SUVmax of calcification was measured and the background radioactivity of the left atrium was measured to determine Target to Background (TBR) and quantitatively analyzed. High risk group was classified through ROC curve (Receiver Operating Characteristic Curve). Results There were 226 coronary artery calcifications in the cohort and SUVmax was $1.15{\pm}0.39$. Of the 28 patients (62%), 58 were classified as high risk (TBR > 1.25). The remaining 168 were $TBR{\leq}1.25$. Conclusion $^{18}F-NaF$ PET images were available for quantitative assessment of microcalcifications and could be classified into high-risk groups. The combination of angiographic CT and $^{18}F-NaF$ PET may be a new method for early diagnosis of high-risk microcalcifications.

Trans-Aortic Flow Turbulence and Aortic Valve Inflammation: A Pilot Study Using Blood Speckle Imaging and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography in Patients With Moderate Aortic Stenosis

  • Soyoon Park;Woo-Baek Chung;Joo Hyun O;Kwan Yong Lee;Mi-Hyang Jung;Hae-Ok Jung;Kiyuk Chang;Ho-Joong Youn
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.3
    • /
    • pp.145-149
    • /
    • 2023
  • BACKGROUND: 18F-sodium fluoride positron emission tomography/computed tomography (18F-NaF PET/CT) has been proven to be useful in identification of microcalcifications, which are stimulated by inflammation. Blood speckle imaging (BSI) is a new imaging technology used for tracking the flow of blood cells using transesophageal echocardiography (TEE). We evaluated the relationship between turbulent flow identified by BSI and inflammatory activity of the aortic valve (AV) as indicated by the 18F-NaF uptake index in moderate aortic stenosis (AS) patients. METHODS: This study enrolled 18 moderate AS patients diagnosed within the past 6 months. BSI within the aortic root was acquired using long-axis view TEE. The duration of laminar flow and the turbulent flow area ratio were calculated by BSI to demonstrate the degree of turbulence. The maximum and mean standardized uptake values (SUVmax, SUVmean) and the total microcalcification burden (TMB) as measured by 18F-NaF PET/CT were used to demonstrate the degree of inflammatory activity in the AV region. RESULTS: The mean SUVmean, SUVmax, and TMB were 1.90 ± 0.79, 2.60 ± 0.98, and 4.20 ± 2.18 mL, respectively. The mean laminar flow period and the turbulent area ratio were 116.1 ± 61.5 msec and 0.48 ± 0.32. The correlation between SUVmax and turbulent flow area ratio showed the most positive and statistically significant correlation, with a Pearson's correlation coefficient (R2) of 0.658 and a p-value of 0.014. CONCLUSIONS: The high degree of trans-aortic turbulence measured by BSI was correlated with severe AV inflammation.